Vladimir Ivanovich Gridnev

Learn More
We investigate synchronization between the low-frequency oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz. A method is proposed for quantitative estimation of synchronization between these oscillating processes based on calculation of relative time of phase synchronization of oscillations. It is shown that(More)
Synchronization parameters of 0.1-Hz rhythms isolated from the heart rate and the oscillations of the blood volume in microcirculatory vessels were studied in 12 healthy subjects and 32 patients with acute myocardial infarction. Recordings of the electrocardiogram and the pulsogram from the distal phalanx of the index finger, as well as mechanical recording(More)
For the cases of spontaneous respiration and paced respiration with a fixed frequency and linearly increasing frequency, we investigate synchronization between three main rhythmic processes governing the cardiovascular dynamics in humans, namely, the main heart rhythm, respiration, and the process whose fundamental frequency is close to 0.1 Hz. The analysis(More)
Functional interaction was studied between the subsystems that ensure autonomic control of the heart rate (HR) and blood pressure (BP) and give rise to 0.1-Hz oscillations in R-R intervals (RRI) and photoplethysmogram (PPG). Twenty-five recordings were obtained from 18- to 32-year-old healthy persons (six women and nineteen men). The RRI and PPG were(More)
Frequency estimates of the heart rate variability (HRV) spectrum influenced by external periodic stimuli were studied in healthy subjects and patients with coronary heart disease (CHD). Sensory stimulation by periodic eye opening at a rate of 15, 10, 8, 6, or 5 times per minute, as well as spontaneous and controlled breathing at a rate of 15, 10, 8, 6, or 5(More)
BACKGROUND Synchronization between 0.1-Hz rhythms in cardiovascular system is deteriorated at acute myocardial infarction (AMI) leading to a disruption of natural functional couplings within the system of autonomic regulation. OBJECTIVE This study evaluates the prognostic value of autonomic regulation indices for the 5-year risk of fatal and nonfatal(More)
Biophysical features of 0.1-Hz oscillations of heart rate variability (HRV) and distal blood flow (DBF) variability were compared in healthy subjects and patients after acute myocardial infarction (MI). Patients with acute MI (72 men and 53 women; 125 in total) and healthy subjects (23 men and 10 women; 33 in total) aged 30–83 and 20–46 years, respectively,(More)
An orthostatic test with frequency-controlled breathing (with periods of 4, 6, 8, 10, and 12 s) was used to analyze frequency estimates of the heart rate variability (HRV) spectrum in the low frequency (LF) and high frequency (HF) ranges in 36 volunteers (26 men and 10 women) aged 19–21 years without signs of heart or respiratory pathology. The subjects(More)
The use of short message services and mobile phone technology for ambulatory care management is the most accessible and most inexpensive way to transition from traditional ambulatory care management to active ambulatory care management in patients with arterial hypertension (AH). The aim of this study was to compare the clinical efficacy of active(More)
BACKGROUND Selection of the optimal dose of beta-blocker treatment in myocardial infarction (MI) patients is problematic because of a lack of well-established guidelines. METHODS We evaluated changes in synchronization between 0.1 Hz oscillations in heart rate (HR) and plethysmographic peripheral microcirculation in response to a tilt-table test and to(More)