Vladimir G. Ivancevic

Learn More
General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field–theoretic psychodynamics [1,2,13], resulting in the development of a new concept of life–space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be(More)
We propose an entropic geometrical model of crowd behavior dynamics (with dissipative crowd kinematics), using Feynman action–amplitude formalism that operates on three synergetic levels: macro, meso and micro. The intent is to explain the dynamics of crowds simultaneously and consistently across these three levels, in order to characterize their(More)
A novel, brain-like, hierarchical (affine-neuro-fuzzy-topological) control for biomechanically realistic humanoid-robot biodynamics (HB), formulated previously in [15, 16], is proposed in the form of a tensor-invariant, “meta-cybernetic” functor machine. It represents a physiologically inspired, three-level, nonlinear feedback controller of muscularlike(More)
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrödinger (NLS) equations, defining the option-pricing wave function in terms of the stock price and time. The model includes two(More)
The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several(More)
We propose an entropic geometrical model of psycho–physical crowd dynamics (with dissipative crowd kinematics), using Feynman action–amplitude formalism that operates on three synergetic levels: macro, meso and micro. The intent is to explain the dynamics of crowds simultaneously and consistently across these three levels, in order to characterize their(More)