Vladimir F. Khopin

Learn More
For the first time, 3-dimensional luminescence spectra (luminescence intensity as a function of the excitation and emission wavelengths) have been obtained for bismuth-doped optical fibers of various compositions in a wide spectral range (450-1700 nm). The bismuth-doped fibers investigated have the following core compositions: SiO(2), GeO(2), Al-doped(More)
Optical fibers with bismuth-doped silicate and germanate glass cores were fabricated by the modified chemical vapor deposition technique (solution and vapor-phase Bi incorporation). The fibers revealed an efficient luminescence with a maximum in the 1050-1200 nm spectral range, FWHM up to 200 nm, and a lifetime of the order of 1 ms.
Germania-glass-core silica-glass-cladding single-mode fibers (deltan as great as 0.143) with a minimum loss of 20 dB/km at 1.85 microm were fabricated by modified chemical-vapor deposition. The fibers exhibit strong photorefractivity, with type IIa index modulation of 2 x 10(-3). A Raman gain of 300 dB/(kmW) was determined at 1.12 microm. Only 3 m of such(More)
We describe the design and characterization of solid core large mode area bandgap fibers exhibiting low propagation loss and low bend loss. The fibers have been prepared by modified chemical vapor deposition process. The bandgap guidance obtained thanks to a 3-bilayer periodic cladding is assisted by a very slight index step (5.10-4) in the solid core. The(More)
An original architecture of an active fiber allowing a nearly diffraction-limited beam to be produced is demonstrated. The active medium is a double-clad large-mode-area photonic-bandgap fiber consisting of a 10,000 ppm by weight Yb(3+)-doped core surrounded by an alternation of high- and low-index layers constituting a cylindrical photonic crystal. The(More)
Saturable absorption in bismuth-doped glasses was found to have a noticeable influence on soliton interaction and group formation. This phenomenon, observed in 1450 nm mode-locked bismuth-doped fiber laser, shows the distinct feature of the multiple pulse regime, which appears as a stationary pulse group whose length can be spread over the whole cavity(More)
An efficient CW bismuth fiber laser operating around 1.46 μm with an efficiency of >50% and an output power of >20 W has been developed on a bismuth-doped GeO(2)-SiO(2) fiber. The laser demonstrates weak dependence of the output power on temperature in comparison with bismuth lasers operating near 1.15 and 1.3 μm. The laser generation has been obtained in(More)
A 24 dB gain bismuth-doped fiber amplifier at 1430 nm pumped by a 65 mW commercial laser diode at 1310 nm is reported for the first time (to our knowledge). A 3 dB bandwidth of about 40 nm, a noise figure of 6 dB, and a power conversion efficiency of about 60% are demonstrated. The temperature behavior of the gain spectrum is examined.
It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the(More)
We demonstrate a 1.44-μm bismuth-doped master oscillator-power amplifier (MOPA) system for generating femtosecond pulses. The cavity of master oscillator comprises dispersion-compensating fiber for detuning the total dispersion to the normal regime and a carbon nanotube saturable absorber for triggering the mode-locked operation. The described multifunction(More)