Vladimir Eltsov

Learn More
The first realization of instabilities in the shear flow between two superfluids is examined. The interface separating the A and B phases of superfluid 3He is magnetically stabilized. With uniform rotation we create a state with discontinuous tangential velocities at the interface, supported by the difference in quantized vorticity in the two phases. This(More)
Hydrodynamic flow in classical and quantum fluids can be either laminar or turbulent. Vorticity in turbulent flow is often modelled with vortex filaments. While this represents an idealization in classical fluids, vortices are topologically stable quantized objects in superfluids. Superfluid turbulence is therefore thought to be important for the(More)
We study a twisted vortex bundle where quantized vortices form helices circling around the axis of the bundle in a "force-free" configuration. Such a state is created by injecting vortices into a rotating vortex-free superfluid. Using continuum theory we determine the structure and the relaxation of the twisted state. This is confirmed by numerical(More)
The present generation of rotating refrigerators, which are used for the study of quantized vorticity in helium superfluids, are often capable of cooling to mK temperatures and rotate up to ’ 1 rev/s. To achieve single-vortex resolution at all rotation velocities, smooth and stable rotation is required. This calls for low and stable rotational friction,(More)
The experimental investigation of superfluid turbulence in He-B is generally not possible with the techniques which have been developed for He-II. We describe a new method by which a transient burst of turbulent vortex expansion can be generated in He-B. It is based on the injection of a few vortex loops into rotating vortex-free flow. The time-dependent(More)
New techniques, both for generating and detecting turbulence in the helium superfluids 3He-B and 4He, have recently given insight in how turbulence is started, what the dissipation mechanisms are, and how turbulence decays when it appears as a transient state or when externally applied turbulent pumping is switched off. Important simplifications are(More)
A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc.(More)
In isotropic macroscopic quantum systems vortex lines can be formed while in anisotropic systems also vortex sheets are possible. Based on measurements of superfluid 3He-A, we present the principles which select between these two competing forms of quantized vorticity: sheets displace lines if the frequency of the external drive exceeds a critical limit.(More)
We present experimental, numerical, and theoretical studies of a vortex front propagating into a region of vortex-free flow of rotating superfluid 3He-B. We show that the nature of the front changes from laminar through quasiclassical turbulent to quantum turbulent with decreasing temperature. Our experiment provides the first direct measurement of the(More)
We study a two-phase sample of superfluid 3He where vorticity exists in one phase (3He-A) but cannot penetrate across the interfacial boundary to a second coherent phase (3He-B). We calculate the bending of the vorticity into a surface vortex sheet on the interface and solve the internal structure of this new type of vortex sheet. The compression of the(More)