Vladimir E. Korepin

Learn More
We consider a database separated into blocks. Blocks containing target items are called target blocks. Blocks without target items are called non-target blocks. We consider a case, when each target block has the same number of target items. We present a fast quantum algorithm, which finds one of the target blocks. Our algorithm is based on(More)
We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The(More)
Searching and sorting used as a subroutine in many important algorithms. Quantum algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster, this is partial search. An example is the following: exact address of the(More)
Quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster, this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of(More)
We consider reduced density matrix of a large block of consecutive spins in the ground states of the XY spin chain on an infinite lattice. We derive the spectrum of the density matrix using expression of Rényi entropy in terms of modular functions. The eigenvalues λ n form exact geometric sequence. For example, for strong magnetic field λ n = C exp (−πτ 0(More)
  • 1