Vladimir B. Bajic

Learn More
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and(More)
Mammalian promoters can be separated into two classes, conserved TATA box–enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the(More)
Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis(More)
Promoter prediction programs (PPPs) are important for in silico gene discovery without support from expressed sequence tag (EST)/cDNA/mRNA sequences, in the analysis of gene regulation and in genome annotation. Contrary to previous expectations, a comprehensive analysis of PPPs reveals that no program simultaneously achieves sensitivity and a positive(More)
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene(More)
We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the(More)
Dragon Promoter Finder (DPF) locates RNA polymerase II promoters in DNA sequences of vertebrates by predicting Transcription Start Site (TSS) positions. DPF's algorithm uses sensors for three functional regions (promoters, exons and introns) and an Artificial Neural Network (ANN). Results on a large and diverse evaluation set indicate that DPF exhibits a(More)
This paper introduces a new computer system for recognition of functional transcription start sites (TSSs) in RNA polymerase II promoter regions of vertebrates. This system allows scanning complete vertebrate genomes for promoters with significantly reduced number of false positive predictions. It can be used in the context of gene finding through its(More)
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, MULTIPRED, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. MULTIPREDis both sensitive and specific, and(More)
We analyzed an extended core promoter regions covering [-70,+60] segment relative to the transcription start site of human promoters contained in the Eukaryotic Promoter Database. The analysis was made by using the Match program ver. 1.9 with an optimized setting and the TRANSFAC Professional database ver. 7.2. This analysis revealed that the most common(More)