Vladimir A. Hovhannisyan

Learn More
The conjugates of gold nanorods and the model drug, fluorescein isothiocyanate (FITC), embedded inside polyelectrolytes (GNRs/FITC@PLE) were synthesized to study the release kinetics of FITC under femtosecond near-infrared (NIR) laser irradiation. The optical and structural properties of GNRs/FITC@PLE conjugates before and after laser treatments were(More)
We utilize multiphoton microscopy for the label-free diagnosis of noncancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from humans. Our results show that the combination of second-harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative(More)
The purpose of this study was to image and quantify the structural changes of corneal edema by second harmonic generation (SHG) microscopy. Bovine cornea was used as an experimental model to characterize structural alterations in edematous corneas. Forward SHG and backward SHG signals were simultaneously collected from normal and edematous bovine corneas to(More)
We apply multiphoton microscopy for the qualitative imaging and quantitative analysis of hepatocellular carcinoma (HCC) of different grades under ex-vivo, label-free conditions, and found that multiphoton autofluorescence (MAF) is effective in identifying cellular architecture in the liver specimens, and can be used to obtain quantitative parameters for(More)
We used the combination of multiphoton autofluorescence (MAF), forward second-harmonic generation (FWSHG), and backward second-harmonic generation (BWSHG) imaging for the qualitative and quantitative characterization of thermal damage of ex vivo bovine cornea. We attempt to characterize the structural alterations by qualitative MAF, FWSHG, and BWSHG imaging(More)
The effects of off-axis optical aberration in multiphoton microscopy and the resulting lateral and axial image inhomogeneity are investigated. The lateral inhomogeneity of the scanning field is demonstrated by second harmonic generation (SHG) imaging of fasciae and two-photon fluorescence (TPF) microscopy of thin fluorescent samples. Furthermore, refractive(More)
Tissue glycation from diabetes and aging can result in complications such as renal failure, blindness, nerve damage and vascular diseases. In this work, we applied multiphoton microscopy for imaging and characterizing the extent of tissue glycation. The characteristic features of multiphoton autofluorescence (MPAF) and second harmonic generation (SHG)(More)
Conventionally, liver fibrosis is diagnosed using histopathological techniques. The traditional method is time-consuming in that the specimen preparation procedure requires sample fixation, slicing, and labeling. Our goal is to apply multiphoton microscopy to efficiently image and quantitatively analyze liver fibrosis specimens bypassing steps required in(More)
Photophysical mechanisms of collagen photomodification (CFP) by the use of a 80 MHz, 780 nm femtosecond titanium-sapphire laser were investigated. Our observation that the decrease in collagen second harmonic generation and increase in two-photon autofluorescence intensity occurred primarily at sites where photoproducts were present suggested that the(More)
Large-area multiphoton laser scanning microscopy (LMLSM) can be applied in biology and medicine for high sensitivity and resolution tissue imaging. However, factors such as refractive index mismatch induced spherical aberration, emission/excitation absorption and scattering can result in axial intensity attenuation and lateral image heterogeneity, affecting(More)