#### Filter Results:

#### Publication Year

1998

2015

#### Publication Type

#### Co-author

#### Key Phrase

Learn More

- Gregory F. Lawler, Vlada Limic
- 2009

- David Aldous, Vlada Limic
- 1998

The multiplicative coalescent X(t) is a l 2-valued Markov process representing co-alescence of clusters of mass, where each pair of clusters merges at rate proportional to product of masses. From random graph asymptotics it is known (Aldous (1997)) that there exists a standard version of this process starting with infinitesimally small clusters at time −∞.… (More)

We consider a nearest neighbor walk on a regular tree, with transition probabilities proportional to weights or conductances of the edges. Initially all edges have weight 1, and the weight of an edge is increased to c > 1 when the edge is traversed for the first time. After such a change the weight of an edge stays at c forever. We show that such a walk is… (More)

Motivated by the work of Tilman (Ecology 75 (1994) 2) and May and Nowak (J. Theoret. Biol. 170 (1994) 95) we consider a process in which points are inserted randomly into the unit interval and a new point kills each point to its left independently and with probability a. Intuitively this dynamic will create a negative dependence between the number of points… (More)

We consider spatially interacting Moran models and their diffusion limit which are interacting Fisher-Wright diffusions. The Moran model is a spatial population model with individuals of different type located on sites given by elements of an Abelian group. The dynamics of the system consists of independent migration of individuals between the sites and a… (More)

- Vlada Limic
- 2009

The Ξ-coalescent processes were initially studied by Möhle and Sagitov (2001), and introduced by Schweinsberg (2000) in their full generality. They arise in the mathematical population genetics as the complete class of scaling limits for genealogies of Cannings' models. The Ξ-coalescents generalize Λ-coalescents, where now simultaneous multiple collisions… (More)

We describe a new general connection between Λ-coalescents and genealogies of continuous-state branching processes. This connection is based on the construction of an explicit coupling using a particle representation inspired by the lookdown process of Donnelly and Kurtz. This coupling has the property that the coalescent comes down from infinity if and… (More)

- Vlada Limic
- 2010

This article considers a model of genealogy corresponding to a regular ex-changeable coalescent (also known as Ξ-coalescent) started from a large finite configuration, and undergoing neutral mutations. Asymptotic expressions for the number of active lineages were obtained by the author in a previous work. Analogous results for the number of active… (More)

- Vlada Limic, Anja Sturm
- 2006

This paper extends the notion of the Λ-coalescent of Pitman (1999) to the spatial setting. The partition elements of the spatial Λ-coalescent migrate in a (finite) geographical space and may only coalesce if located at the same site of the space. We characterize the Λ-coalescents that come down from infinity, in an analogous way to Schweinsberg (2000).… (More)

Motivated by the problem of the evolution of DNA sequences, Kauffman and Levin introduced a model in which fitnesses were assigned to strings of 0's and 1's of length N based on the values observed in a sliding window of length K + 1. When K ≥ 1, the landscape is quite complicated with many local maxima. Its properties have been extensively investigated by… (More)