Vlad Badilita

Learn More
We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design,(More)
We present the use of the polysaccharide chitosan for immobilizing biomolecules on microfabricated device surfaces. The main advantages of chitosan are its abundance of primary amine groups and its ability to be electrodeposited. Biomolecules are easily attached to chitosan 's amines by standard glutaraldehyde chemistry. The electrodeposition of chitosan(More)
This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and(More)
We present for the first time a novel photoresist lamination process for the fabrication of 3D microfluidic networks with a newly achieved level of topological complexity. We demonstrate an extended microfluidic system with three stacked layers of fluidic channels which allows for arbitrary fluidic interconnection configurations without the need for(More)
  • 1