Viviana Cadena

Learn More
Comparative physiological research on reptiles has focused primarily on the understanding of mechanisms of the control of breathing as they relate to respiratory gases or temperature itself. Comparatively less research has been done on the possible link between breathing and thermoregulation. Reptiles possess remarkable thermoregulatory capabilities, making(More)
BACKGROUND Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica) are(More)
Metabolic functions are generally optimized within a narrow range of body temperatures (T(b)'s), conferring thermoregulation great importance to the survival and fitness of an animal. In lizards, T(b) regulation is mainly behavioral, and the metabolic costs associated with behavioral thermoregulation are primarily locomotory. In reptiles, however, it has(More)
Rattlesnakes use their facial pit organs to sense external thermal fluctuations. A temperature decrease in the heat-sensing membrane of the pit organ has the potential to enhance heat flux between their endothermic prey and the thermal sensors, affect the optimal functioning of thermal sensors in the pit membrane and reduce the formation of thermal(More)
The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where(More)
Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal’s absorptance of solar energy in both(More)
The objectives of this study were to compare the thermoregulatory, metabolic and ventilatory responses to hypoxia of the high altitude bar-headed goose with low altitude waterfowl. All birds were found to reduce body temperature (T(b)) during hypoxia, by up to 1-1.5 degrees C in severe hypoxia. During prolonged hypoxia, T(b) stabilized at a new lower(More)
Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses(More)
With some notable exceptions, small ectothermic vertebrates are incapable of endogenously sustaining a body temperature substantially above ambient temperature. This view was challenged by our observations of nighttime body temperatures sustained well above ambient (up to 10°C) during the reproductive season in tegu lizards (~2 kg). This led us to(More)
The ability to change colour rapidly is widespread among ectotherms and has various functions including camouflage, communication and thermoregulation. The process of colour change can occur as an aperiodic event or be rhythmic, induced by cyclic environmental factors or regulated by internal oscillators. Despite the importance of colour change in reptile(More)