Learn More
Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed to improve on(More)
In Trypanosoma brucei, transcription by RNA polymerase II accounts for the expression of the spliced leader (SL) RNA and most protein coding mRNAs. To understand the regulation of RNA polymerase II transcription in these parasites, we have purified a transcriptionally active enzyme through affinity chromatography of its essential subunit, RPB4. The enzyme(More)
Protein-coding genes of trypanosomes are mainly transcribed polycistronically and cleaved into functional mRNAs in a process that requires trans splicing of a capped 39-nucleotide RNA derived from a short transcript, the spliced-leader (SL) RNA. SL RNA genes are individually transcribed from the only identified trypanosome RNA polymerase II promoter. We(More)
RADAR is a web server that provides a multitude of functionality for RNA data analysis and research. It can align structure-annotated RNA sequences so that both sequence and structure information are taken into consideration during the alignment process. This server is capable of performing pairwise structure alignment, multiple structure alignment,(More)
Constrained sequence alignment has been studied extensively in the past. Different forms of constraints have been investigated, where a constraint can be a subsequence, a regular expression, or a probability matrix of symbols and positions. However, constrained structural alignment has been investigated to a much lesser extent. In this paper, we present an(More)
The carboxy-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II (RNAP-II) is essential for gene expression in metazoa and yeast. The canonical CTD is characterized by heptapeptide repeats. Differential phosphorylation of canonical CTD orchestrates transcriptional and co-transcriptional maturation of mRNA and snRNA. Many organisms,(More)
  • 1