Learn More
The present investigation was aimed at optimization of estradiol loaded PLGA nanoparticulate formulations resulting in improved oral bioavailability and sustained release of estradiol by varying the molecular weight and copolymer composition of PLGA. Nanoparticles were prepared following emulsion-diffusion-evaporation method employing didodecyldimethyl(More)
Antioxidants are emerging as prophylactic and therapeutic agents. These are the agents, which scavenge free radicals otherwise reactive oxygen species and prevent the damage caused by them. Free radicals have been associated with pathogenesis of various disorders like cancer, diabetes, cardiovascular diseases, autoimmune diseases, neurodegenerative(More)
The cyclosporine-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared by the emulsion-diffusion-evaporation method and were optimized for particle size and entrapment efficiency. The optimized particles were 143.3+/-8.7 nm in size with narrow size distribution and 71.9+/-1.7% entrapment efficiency at 20% w/w initial drug loading when(More)
Estradiol (E2), a highly lipophilic molecule with good oral absorption but poor oral bioavailability, was incorporated into poly(lactide-co-glycolide) (PLGA) nanoparticles to improve its oral bioavailability. Nanoparticles were prepared by using polyvinyl alcohol (PVA) or didodecyldimethylammonium bromide (DMAB) as stabilizer, leading to negatively (size(More)
PURPOSE This study was carried out to formulate poly(lactide-co-glycolide) (PLGA) nanoparticles using a quaternary ammonium salt didodecyl dimethylammonium bromide (DMAB) and checking their utility to deliver paclitaxel by oral route. METHODS Particles were prepared by emulsion solvent diffusion evaporation method. DMAB and particles stabilized with it(More)
The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion-diffusion-evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl(More)
Since its discovery in 1971, ciclosporin has revolutionized organ transplantation and the treatment of autoimmune disorders. The wide array of applications resulting from its clinical efficacy warrant unique administration strategies and varying doses, times of exposure and extents of distribution, depending on target tissue. The poor biopharmaceutical(More)
PURPOSE Ellagic acid (EA), a dietary antioxidant associated with poor biopharmaceutical properties, was encapsulated into poly(lactide-co-glycolide) (PLGA) and polycaprolactone (PCL) nanoparticles to improve oral bioavailability. MATERIALS AND METHODS EA-loaded nanoparticles were prepared following emulsion-diffusion-evaporation method employing(More)
The aim of the present work was to develop ellagic acid (EA) loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for oral administration. PLGA nanoparticles were prepared by a method based on the concept of emulsion-diffusion-evaporation by using polyethylene glycol (PEG) 400 as a cosolvent for solubilizing the drug. While developing this method,(More)