Learn More
— The popularity of IEEE 802.11 WLANs has led to dense deployments in urban areas. High density leads to sub-optimal performance unless the interfering networks learn how to optimally use and share the spectrum. This paper proposes two fully distributed algorithms that allow (i) multiple interfering 802.11 Access Points to select their operating frequency(More)
— The low cost and the ease of deployment of WiFi devices, as well as the need to support high bandwidth applications over 802.11 WLANs has led to the emergence of high density 802.11 networks in urban areas and enterprises. High density wireless networks, by design, face significant challenges due to increased interference resulting from the close(More)
—We consider a heterogeneous sensor network in which nodes are to be deployed over a unit area for the purpose of surveillance. An aircraft visits the area periodically and gathers data about the activity in the area from the sensor nodes. There are two types of nodes that are distributed over the area using two-dimensional homogeneous Poisson point(More)
When sensor nodes are organized in clusters, they could use either single hop or multi-hop mode of communication to send their data to their respective cluster heads. We present a systematic cost-based analysis of both the modes, and provide results that could serve as guidelines to decide which mode should be used for given settings. We determine closed(More)
The handoff algorithms in the current generation of 802.11 networks are primarily reactive in nature, because they wait until the link quality degrades substantially to trigger a handoff. They further rely on instantaneous signal strength measurements when choosing the best AP. This approach leads to handoff delays on the order of 1-2 seconds that are(More)
— We present a cost based comparative study of homogeneous and heterogeneous clustered sensor networks. We focus on the case where the base station is remotely located and the sensor nodes are not mobile. Since we are concerned with the overall network dimensioning problem, we take into account the manufacturing cost of the hardware as well as the battery(More)
Dense deployments of WLANs suffer from increased interference and as a result, reduced capacity. There are three main functions used to improve the overall network capacity: a) intelligent frequency allocation across APs, b) load-balancing of user affiliations across APs, and c) adaptive power-control for each AP. Several algorithms have been proposed in(More)
We study the problem of scheduling in OFDMA-based relay networks with emphasis on IEEE 802.16j based WiMAX relay networks. In such networks, in addition to a base station, multiple relay stations are used for enhancing the throughput, and/or improving the range of the base station. We solve the problem of MAC scheduling in such networks so as to serve the(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract—Long-distance multi-hop wireless networks have been used in recent(More)
A surveillance area is to be monitored using a grid network of heterogeneous sensor nodes. There are two types of nodes; type 0 nodes which perform sensing and relaying of data within a cluster, and type 1 nodes which act as cluster heads or fusion points. A surveillance aircraft visits the area periodically, and gathers information about the activity in(More)