Learn More
The excellent electrical, optical and mechanical properties of graphene have driven the search to find methods for its large-scale production, but established procedures (such as mechanical exfoliation or chemical vapour deposition) are not ideal for the manufacture of processable graphene sheets. An alternative method is the reduction of graphene oxide, a(More)
Commonly used ferroelectric perovskites are also wide-band-gap semiconductors. In such materials, the polarization and the space-charge distribution are intimately coupled, and this Letter studies them simultaneously with no a priori ansatz on either. In particular, we study the structure of domain walls and the depletion layers that form at the(More)
Graphene in its pristine form is one of the strongest materials tested, but defects influence its strength. Using atomistic calculations, we find that, counter to standard reasoning, graphene sheets with large-angle tilt boundaries that have a high density of defects are as strong as the pristine material and, unexpectedly, are much stronger than those with(More)
Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly(More)
We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low(More)
The bacterial pathogen Listeria monocytogenes propels itself in the cytoplasm of the infected cells by forming a filamentous comet tail assembled by the polymerization of the cytoskeletal protein actin. Although a great deal is known about the molecular processes that lead to actin-based movement, most macroscale aspects of motion, including the nature of(More)
We report in situ scanning tunneling microscopy studies of graphene growth on Pd(111) during ethylene deposition at temperatures between 723 and 1023 K. We observe the formation of monolayer graphene islands, 200-2000 A in size, bounded by Pd surface steps. Surprisingly, the topographic image contrast from graphene islands reverses with tunneling bias,(More)
Water microdroplets containing graphene oxide and a second solute are shown to spontaneously segregate into sack-cargo nanostructures upon drying. Analytical modeling and molecular dynamics suggest the sacks form when slow-diffusing graphene oxide preferentially accumulates and adsorbs at the receding air-water interface, followed by capillary collapse.(More)
In this paper we report a fundamental morphological instability of constrained 3D microtissues induced by positive chemomechanical feedback between actomyosin-driven contraction and the mechanical stresses arising from the constraints. Using a 3D model for mechanotransduction we find that perturbations in the shape of contractile tissues grow in an unstable(More)
We demonstrate how substrate interfacial chemistry can be utilized to tailor the physical properties of single-crystalline molybdenum disulfide (MoS2) atomic-layers. Semiconducting, two-dimensional MoS2 possesses unique properties that are promising for future optical and electrical applications for which the ability to tune its physical properties is(More)