Learn More
To meet the objectives of many future missions, robots will need to be adaptable and reconfigurable. A concept for such a robotic system has been proposed previously based on using a large number of simple binary actuators. Previous researchers have addressed some of the issues brought up by robots with a few binary actuators. This paper examines the(More)
In field environments it is often not possible to provide robot teams with detailed a priori environment and task models. In such un-structured environments, robots will need to create a dimensionally accurate three-dimensional geometric model of its surroundings by performing appropriate sensor actions. However, uncertainties in robot locations and sensing(More)
Planetary surface mobility has to date been limited to benign locations. If rover systems could be developed for more challenging terrain, e.g., sloped and irregularly featured areas, then planetary science opportunities would be greatly expanded. We have in the last several years carried out a related program of R&D that involves new concepts in(More)
BRAID element is intended to meet the challenges of future space robotic systems that need to perform more complex tasks than are currently feasible. It is lightweight, has a high degree of freedom and a large workspace. The device is based on embedded muscle type binary actuators and flexure linkages. Such a system may be used for a wide range of tasks,(More)
In field environments it is not usually possible to provide robotic systems with valid geometric models of the task and environment. The robot or robot teams will need to create these models by performing appropriate sensor actions. Here, an algorithm based on iterative sensor planning and sensor redundancy is proposed to enable them to efficiently build 3D(More)
—High-performance robot-control algorithms often rely on system-dynamic models. For field robots, the dynamic parameters of these models may not be well known. This paper presents a mutual-information-based observability metric for the online dynamic parameter identification of a multibody system. The metric is used in an algorithm to optimally select the(More)
In field environments it is not usually possible to provide robots in advance with valid geometric models of its environment and task element locations. The robot or robot teams need to create and use these models to locate critical task elements by performing appropriate sensor based actions. This paper presents a multi-agent algorithm for a manipulator(More)
This paper presents the design of a new lightweight, hyper-redundant, deployable Binary Robotic Articulated Intelligent Device (BRAID), for space robotic systems. The BRAID is intended to meet the challenges of future space robotic systems that need to perform more complex tasks than are currently feasible. It is lightweight, has a high degree of freedom,(More)
This paper presents a study to experimentally evaluate a new design paradigm for robotic components, with emphasis on space robotics applications. In this design paradigm, robotic components are made from embedded binary ac-tuators and compliant mechanisms in order to reduce weight and complexity. This paper presents a series of five experiments that(More)