Vittorio Gremigni

Learn More
As stem cells are rare and difficult to study in vivo in adults, the use of classical models of regeneration to address fundamental aspects of the stem cell biology is emerging. Planarian regeneration, which is based upon totipotent stem cells present in the adult--the so-called neoblasts--provides a unique opportunity to study in vivo the molecular program(More)
Mammalian stem cells are difficult to access experimentally; model systems that can regenerate offer an alternative way to characterize stem cell related genes. Planarian regeneration depends on adult pluripotent stem cells - the neoblasts. These cells can be selectively destroyed using X-rays, enabling comparison of organisms lacking stem cells with(More)
We report the presence of two Pax6-related genes, Pax6A and Pax6B, which are highly conserved in two planarian species Dugesia japonica and Girardia tigrina (Platyhelminthes, Tricladida). Pax6A is more similar to other Pax6 proteins than Pax6B, which is the most divergent Pax6 described so far. The planarian Pax6 homologs do not show any clear orthology to(More)
A conserved network of nuclear proteins is crucial to eye formation in both vertebrates and invertebrates. The finding that freshwater planarians can regenerate eyes without the contribution of Pax6 suggests that alternative combinations of regulatory elements may control the morphogenesis of the prototypic planarian eye. To further dissect the molecular(More)
Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the(More)
Planarian regeneration, based upon totipotent stem cells, the neoblasts, provides a unique opportunity to study in vivo the molecular program that defines a stem cell. In this study, we report the identification of DjPiwi-1, a planarian homologue of Drosophila Piwi. Expression analysis showed that DjPiwi-1 transcripts are preferentially accumulated in small(More)
The peripheral benzodiazepine receptor (PBR) is a component of a multiprotein complex, located at the contact site between the inner and outer mitochondrial membranes, which constitutes the mitochondrial permeability transition (MPT)-pore. The opening of the MPT-pore, leading to the transmembrane mitochondrial potential (DeltaPsi(m)) dissipation, is a(More)
The development of vitelline cells in the fresh-water Triclad Dugesia lugubris has been studied by means of electron microscopic and cytochemical techniques. We observed a single cell type in different stages of development more or less evenly distributed from the periphery towards the centre of the follicles. Young vitelline cells have the characteristic(More)
Strong evidence is emerging that mitochondrial permeability transition (MPT) may be important in certain physiological conditions and, above all, in the processes of cell damage and death. Reversible MPT, triggered by inducing agents in the presence of calcium ions, has resulted in the opening of a dynamic multiprotein complex formed in the inner(More)
Planarians are a model system for studying adult stem cells, as they possess the neoblasts, a population of pluripotent adult stem cells able to give rise to both somatic and germ cells. Although over the last years several efforts have been made to shed light on neoblast biology, only recent evidence indicate that this population of cells is heterogeneous.(More)