Vittal K. Yachandra

Learn More
The essential involvement of manganese in photosynthetic water oxidation was implicit in the observation by Pirson in 1937 that plants and algae deprived of Mn in their growth medium lost the ability to evolve O2. Addition of this essential element to the growth medium resulted in the restoration of water oxidation within 30 min. There is increased interest(More)
The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn(4)Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn(4)Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and(More)
The mechanism by which the Mn-containing oxygen evolving complex (OEC) produces oxygen from water has been of great interest for over 40 years. This review focuses on how X-ray spectroscopy has provided important information about the structure of this Mn complex and its intermediates, or S-states, in the water oxidation cycle. X-ray absorption near-edge(More)
The oxygen-evolving complex of Photosystem II in plants and cyanobacteria catalyzes the oxidation of two water molecules to one molecule of dioxygen. A tetranuclear Mn complex is believed to cycle through five intermediate states (S0-S4) to couple the four-electron oxidation of water with the one-electron photochemistry occurring at the Photosystem II(More)
The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current study using polarized Sr EXAFS on oriented(More)
The biological generation of oxygen by the oxygen-evolving complex in photosystem II (PS II) is one of nature's most important reactions. The recent X-ray crystal structures, while limited by resolutions of 3.2-3.5 A, have located the electron density associated with the Mn4Ca cluster within the multiprotein PS II complex. Detailed structures critically(More)
The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were(More)
The oxygen-evolving complex of Photosystem II (PS II) in green plants and algae contains a cluster of four manganese atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. A key unresolved question is whether Ca is(More)
A key component required for an understanding of the mechanism of the evolution of molecular oxygen by the photosynthetic oxygen-evolving complex (OEC) in photosystem II (PS II) is the knowledge of the structures of the Mn cluster in the OEC in each of its intermediate redox states, or S-states. In this paper, we report the first detailed structural(More)
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain(More)