Vitor B. P. Leite

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find(More)
Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches(More)
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according(More)
In conformational analysis, the systematic search method completely maps the space but suffers from the combinatorial explosion problem because the number of conformations increases exponentially with the number of free rotation angles. This study introduces a new methodology of conformational analysis that controls the combinatorial explosion. It is based(More)
  • 1