Learn More
A switch in specificity of avian influenza A viruses' hemagglutinin (HA) from avian-like (alpha2-3 sialylated glycans) to human-like (alpha2-6 sialylated glycans) receptors is believed to be associated with their adaptation to infect humans. We show that a characteristic structural topology--and not the alpha2-6 linkage itself--enables specific binding of(More)
The human adaptation of influenza A viruses is critically governed by the binding specificity of the viral surface hemagglutinin (HA) to long (chain length) alpha2-6 sialylated glycan (alpha2-6) receptors on the human upper respiratory tissues. A recent study demonstrated that whereas the 1918 H1N1 pandemic virus, A/South Carolina/1/1918 (SC18), with(More)
The advent of H7N9 in early 2013 is of concern for a number of reasons, including its capability to infect humans, the lack of clarity in the etiology of infection, and because the human population does not have pre-existing immunity to the H7 subtype. Earlier sequence analyses of H7N9 hemagglutinin (HA) point to amino acid changes that predicted human(More)
The role of thymine residues in the formation of G-quartet structures for telomeric sequences has been investigated using model oligonucleotides of the type d(G4TnG4), with n = 1-4. Sequences d(G4T3G4) and d(G4T4G4) adopt a G-quartet structure formed by hairpin dimerization in 70 mM NaCl as judged by a characteristic circular dichroism signature with a 295(More)
Fibroblast growth factor (FGF) family plays key roles in development, wound healing, and angiogenesis. Understanding of the molecular nature of interactions of FGFs with their receptors (FGFRs) has been seriously limited by the absence of structural information on FGFR or FGF-FGFR complex. In this study, based on an exhaustive analysis of the primary(More)
Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved,(More)
The extracellular environment is largely comprised of complex polysaccharides, which were historically considered inert materials that hydrated the cells and contributed to the structural scaffolds. Recent advances in development of sophisticated analytical techniques have brought about a dramatic transformation in understanding the numerous biological(More)
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) mediate a wide variety of complex biological processes by specifically binding proteins and modulating their biological activity. One of the best studied model systems for protein-HSGAG interactions is the fibroblast growth factor (FGF) family of molecules, and recent observations have demonstrated(More)