Vishwa Goudar

Learn More
Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity(More)
This paper surveys the time-bounded or public PUFs, including their design and security evaluation and the new protocols that they can support. ABSTRACT | A physical unclonable function (PUF) is an integrated circuit (IC) that serves as a hardware security primitive due to its complexity and the unpredictability between its outputs and the applied inputs.(More)
Wearable sensing systems are paving the way for significant advances in diagnosis, preventative healthcare and tele-healthcare, by facilitating a variety of wireless health applications for medical signal and diagnostic monitoring and assessment. However, the considerable spatial and temporal sampling for multiple sensed modalities that enable these(More)
— We present a new method for spatiotemporal assignment and scheduling of energy harvesters on a medical shoe tasked with measuring gait diagnostics. While prior work exists on the application of dielectric elastomers (DEs) for energy scavenging on shoes, current literature does not address the issues of placement and timing of these harvesters, nor does it(More)
Determining the order of sensory events separated by a few hundred milliseconds is critical to many forms of sensory processing, including vocalization and speech discrimination. Although many experimental studies have recorded from auditory order-sensitive and order-selective neurons, the underlying mechanisms are poorly understood. Here we demonstrate(More)
— Parasitic energy scavenging from human-generated vibrations with piezoelectric materials has long been studied in contrast to electromagnetic or conventional electrostatic transducers. Dielectric Elastomers (DEs) are now gaining notice as low-cost electrostatic transducers with high energy densities. However, their transduction mechanism is more(More)
—Recent advances in the scope of wearable devices and networks make body area sensor networks (BASNs) an extremely attractive tool to the fields of mobile and tele-health, owing to the range of medical applications they can serve and the diagnostic richness of patient data they can offer. However, for BASNs to achieve true ubiquity, they must be scalable in(More)
As sensor equipped wearable systems enter the mainstream, system longevity and power-efficiency issues hamper large scale and long-term deployment, despite substantial foreseeable benefits. As power and energy efficient design, sampling, processing and communication techniques emerge to counter these issues, researchers are beginning to look on wearable(More)
—We propose a novel harvesting technology to inconspicuously transduce mechanical energy from human foot-strikes and explore its configuration and control towards optimized energy output. Dielectric Elastomers (DEs) are high-energy density, soft, rubber-like material that electrostatically transduce mechanical energy. These properties enables increased(More)