Virginie Uhlmann

Learn More
Understanding the biological underpinnings of movement and action requires the development of tools for quantitative measurements of animal behavior. Drosophila melanogaster provides an ideal model for developing such tools: the fly has unparalleled genetic accessibility and depends on a relatively compact nervous system to generate sophisticated limbed(More)
In recent years, there has been an increasing interest in getting a proper quantitative understanding of cellular and molecular processes [1], [2]. One of the major challenges of current biomedical research is to characterize not only the spatial organization of these complex systems but also their spatiotemporal relationships [3], [4]. Microscopy has(More)
BACKGROUND The Human Protein Atlas (HPA) is an effort to map the location of all human proteins ( It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown(More)
We study the issue of localization in the context of isotropic wavelet frames. We define a variance-type measure of localization and propose an algorithm based on calculus of variations to minimize this criterion under the constraint of a tight wavelet frame. Based on these calculations, we design the variance-optimal wavelet (VOW). Finally, we demonstrate(More)
We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets(More)
We present a new exponential B-spline basis that enables the construction of active contours for the analysis of biomedical images. Our functions generalize the well-known polynomial Hermite B-splines and provide us with a direct control over the tangents of the parameterized contour, which is absent in traditional spline-based active contours. Our basis(More)
Automated classification using machine learning often relies on features derived from segmenting individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm obtained encouraging results but(More)
We propose a novel active contour for the analysis of filament-like structures and boundaries—features that traditional snakes based on closed curves have difficulties to delineate. Our method relies on a parametric representation of an open curve involving Hermite-spline basis functions. This allows us to impose constraints both on the contour and on its(More)
We introduce a new model of parametric contours defined in a continuous fashion. Our curve model relies on Hermite spline interpolation and can easily generate curves with sharp discontinuities; it also grants direct access to the tangent at each location. With these two features, the Hermite snake distinguishes itself from classical spline-snake models and(More)