Virginie Sottile

Learn More
Recent evidence suggests that the postnatal cerebellum contains cells with characteristics of neural stem cells, which had so far only been identified in the subventricular zone of the lateral ventricles and the subdentate gyrus of the hippocampus. In order to investigate the identity of these cells in the adult cerebellum, we have analyzed the expression(More)
The adult brain is known to retain a population of stem cells with self-renewing and differentiation ability, which have been identified in two main regions. Recent reports now suggest the presence of such cells in the cerebellum, a part of the CNS which was not formerly thought to harbour stem cells. The precise nature and localisation of these potential(More)
Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential(More)
Bergmann glia cells are a discrete radial glia population surrounding Purkinje cells in the cerebellar cortex. Although Bergmann glia are essential for the development and correct arborization of Purkinje cells, little is known about the regulation of this cell population after the developmental phase. In an effort to characterize this population at the(More)
Neural stem cells (NSCs) have been found to reside in defined areas of the vertebrate brain, where they can be identified by the expression of specific markers such as Sox1, Sox2 and Sox9. In the mouse, expression of Sox1, Sox2 and Sox9 genes has recently been reported outside of these recognised NSC niches, in the Purkinje cell layer of the adult(More)
BACKGROUND Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply(More)
Germ cell tumours (GCTs) are a diverse group of neoplasms all of which are generally believed to arise from germ cell progenitors (PGCs). Even those that form in the nervous system are likewise believed to be PGC-derived, despite being found a great distance from the normal location of germ cells. The primary evidence in favour of this model for the origins(More)
Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable(More)
Neural stem cells (NSCs) can self-renew and give rise to neurons, astrocytes and oligodendrocytes. NSCs are found in the central nervous system (CNS) of mammalian organisms, and represent a promising resource for both fundamental research and CNS repair. Animal models of CNS damage have highlighted the potential benefit of NSC-based approaches. Here we(More)
  • 1