Virginie Briffaud

Learn More
BACKGROUND A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of(More)
In mammals, the main olfactory bulb (MOB) is driven by air flow respiratory input into the nose. This slow (2-10 Hz) rhythmic input can be observed both at the local field potential (LFP) level, single cell discharge pattern level and intracellular slow oscillations of mitral cells (principal cells of the MOB). Using intracellular recordings in freely(More)
  • 1