Virginia R. de Sa

Learn More
In this paper we develop an algorithm for spectral clustering in the multi-view setting where there are two independent subsets of dimensions, each of which could be used for clustering (or classification). The canonical examples of this are simultaneous input from two sensory modalitites, where input from each sensory modality is considered a view, as well(More)
One of the advantages of supervised learning is that the final error metric is available during training. For classifiers, the algorithm can directly reduce the number of misclassifications on the training set. Unfortunately, when modeling human learning or constructing classifiers for autonomous robots, supervisory labels are often not available or too(More)
We introduce two new low-level computational models of brightness perception that account for a wide range of brightness illusions, including many variations on White's Effect [Perception, 8, 1979, 413]. Our models extend Blakeslee and McCourt's ODOG model [Vision Research, 39, 1999, 4361], which combines multiscale oriented difference-of-Gaussian filters(More)
The role of feature correlations in semantic memory is a central issue in conceptual representation. In two versions of the feature verification task, participants were faster to verify that a feature (< is juicy >) is part of a concept (grapefruit) if it is strongly rather than weakly intercorrelated with the other features of that concept. Contrasting(More)
In supervised learning variable selection is used to find a subset of the available inputs that accurately predict the output. This paper shows that some of the variables that variable selection discards can beneficially be used as extra outputs for inductive transfer. Using discarded input variables as extra outputs forces the model to learn mappings from(More)
A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state(More)
A cornucopia of dimensionality reduction techniques have emerged over the past decade, leaving data analysts with a wide variety of choices for reducing their data. Means of evaluating and comparing low-dimensional embeddings useful for visualization, however, are very limited. When proposing a new technique it is common to simply show rival embeddings(More)
In many problem domains data may come from multiple sources (or views), such as video and audio from a camera or text on and links to a web page. These multiple views of the data are often not directly comparable to one another, and thus a principled method for their integration is warranted. In this paper we develop a new algorithm to leverage information(More)
We show that it is possible to successfully predict subsequent memory performance based on single-trial EEG activity before and during item presentation in the study phase. Two-class classification was conducted to predict subsequently remembered vs. forgotten trials based on subjects' responses in the recognition phase. The overall accuracy across 18(More)
Humans and other animals learn to form complex categories without receiving a target output, or teaching signal, with each input pattern. In contrast, most computer algorithms that emulate such performance assume the brain is provided with the correct output at the neuronal level or require grossly unphysiological methods of information propagation. Natural(More)