Learn More
We measured the timecourse of brightness processing by briefly presenting brightness illusions and then masking them. Brightness induction (brightness contrast) was visible when presented for only 58 ms, was stronger at short presentation times, and its visibility did not depend on spatial frequency. We also found that White's illusion was visible at 82 ms.(More)
We introduce two new low-level computational models of brightness perception that account for a wide range of brightness illusions, including many variations on White's Effect [Perception, 8, 1979, 413]. Our models extend Blakeslee and McCourt's ODOG model [Vision Research, 39, 1999, 4361], which combines multiscale oriented difference-of-Gaussian filters(More)
In supervised learning variable selection is used to find a subset of the available inputs that accurately predict the output. This paper shows that some of the variables that variable selection discards can beneficially be used as extra outputs for inductive transfer. Using discarded input variables as extra outputs forces the model to learn mappings from(More)
Clustering quality evaluation is an essential component of cluster analysis. Given the plethora of clustering techniques and their possible parameter settings, data analysts require sound means of comparing alternate partitions of the same data. When proposing a novel technique, researchers commonly apply two means of clustering quality evaluation. First,(More)
The functions of sleep have been an enduring mystery. Tononi and Cirelli (2003) hypothesized that one of the functions of slow-wave sleep is to scale down synapses in the cortex that have strengthened during awake learning. We create a computational model to test the functionality of this idea and examine some of its implications. We show that synaptic(More)
Various forms of the self-organizing map (SOM) have been proposed as models of cortical development [Choe Y., Miikkulainen R., (2004). Contour integration and segmentation with self-organized lateral connections. Biological Cybernetics, 90, 75-88; Kohonen T., (2001). Self-organizing maps (3rd ed.). Springer; Sirosh J., Miikkulainen R., (1997). Topographic(More)
A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state(More)
One of the advantages of supervised learning is that the final error metric is available during training. For classifiers, the algorithm can directly reduce the number of misclassifications on the training set. Unfortunately , when modeling human learning or constructing classifiers for autonomous robots, supervisory labels are often not available or too(More)