Virginia L. Ferguson

Learn More
The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within(More)
To determine whether the mouse loses bone with aging and whether the changes mimic those observed in human aging, we examined the changes in the tibial metaphysis and diaphysis in the male C57BL/6J mouse over its life span using microcomputed tomography (microCT). Cancellous bone volume fraction (BV/TV) decreased 60% between 6 weeks and 24 months of age.(More)
Spaceflight conditions have a significant impact on a number of physiological functions due to psychological stress, radiation, and reduced gravity. To explore the effect of the flight environment on immunity, C57BL/6NTac mice were flown on a 13-day space shuttle mission (STS-118). In response to flight, animals had a reduction in liver, spleen, and thymus(More)
Pulsed electromagnetic fields (PEMFs) have been used extensively in bone fracture repairs and wound healing. It is accepted that the induced electric field is the dose metric. The mechanisms of interaction between weak magnetic fields and biological systems present more ambiguity than that of PEMFs since weak electric currents induced by PEMFs are believed(More)
The objective of this study was to examine changes in the long bones of male C57BL/6J mice with growth and aging, and to consider the applicability of this animal for use in studying Type II osteoporosis. Male C57BL/6J mice were aged in our colony between 4 and 104 weeks (n=9-15/group). The right femur and humeri were measured for length and subjected to(More)
We studied articular calcified cartilage (ACC) and the immediately subchondral bone (SCB) in normal and osteoarthritic human femoral heads. Thick slices of human normal reference post mortem (PM) and osteoarthritic (OA) femoral heads (age 55-89 years) were embedded in PMMA, micromilled, carbon coated and studied using quantitative backscattered electron(More)
INTRODUCTION Hindlimb unloading-induced muscle atrophy is often assessed after a homeostatic state is established, thus overlooking the early adaptations that are critical to developing this pattern of atrophy. METHODS Muscle function and physiology were characterized at 0, 1, 3, 7, and 14 days of hindlimb suspension (HS). RESULTS Reductions in muscle(More)
Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman(More)
In this study, we examined the effects of 2-week hindlimb un-loading in mice followed by re-ambulation with voluntary access to running wheels. The recovery period was terminated at a time point when physical performance—defined by velocity, time, and distance ran per day—of the suspended group matched that of an unsuspended group. Mice were assigned to one(More)
Although pulsed electromagnetic fields (PEMFs) have been used for treatments of nonunion bone fracture healing for more than three decades, the underlying cellular mechanism of bone formation promoted by PEMFs is still unclear. It has been observed that a series of parameters such as pulse shape and frequency should be carefully controlled to achieve(More)