Virginia L. Ferguson

Learn More
Osteoprotegerin (OPG) is a recently discovered protein related to the tumor necrosis factor receptor family. It has been shown to inhibit ovariectomy (ovx)-induced resorption in rats and increase bone mineral density in young mice. Tail suspension is a procedure that inhibits bone formation in maturing rodents. This study was designed to quantify OPG's(More)
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in(More)
OBJECTIVE To assess the potential of electrical impedance myography (EIM) to serve as a marker of muscle fiber atrophy and secondarily as an indicator of bone deterioration by assessing the effects of spaceflight or hind limb unloading. METHODS In the first experiment, 6 mice were flown aboard the space shuttle (STS-135) for 13 days and 8 earthbound mice(More)
Previous experiments have shown that skeletal unloading resulting from exposure to microgravity induces osteopenia in rats. In maturing rats, this is primarily a function of reduced formation, rather than increased resorption. Insulin-like growth factor-I (IGF-I) stimulates bone formation by increasing collagen synthesis by osteoblasts. The ability of IGF-I(More)
Space missions necessitate physiological and psychological adaptations to environmental factors not present on Earth, some of which present significant risks for the central nervous system (CNS) of crewmembers. One CNS region of interest is the adult olfactory bulb (OB), as OB structure and function are sensitive to environmental- and experience-induced(More)
Vessel ligation using energy-based surgical devices is steadily replacing conventional closure methods during minimally invasive and open procedures. In exploring the molecular nature of thermally-induced tissue bonds, novel applications for surgical resection and repair may be revealed. This work presents an analysis of the influence of unbound water and(More)
Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman(More)
Current efforts to evaluate the performance of laparoscopic arterial fusion devices are limited to costly, time consuming, empirical studies. Thus, a finite element (FE) model, with the ability to predict device performance would improve device design and reduce development time and costs. This study introduces a model of the heat transfer through an artery(More)
The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide(More)
Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer(More)