Virginia Gao

Learn More
Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here we show that repeated exposure to cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. Further, we show, using viral-mediated gene(More)
Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2-adrenergic receptors (βARs) are of particular importance. The differential(More)
Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual's identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular(More)
Chronic cocaine exposure increases the density of dendritic spines on medium spiny neurons (MSNs), the predominant neuronal cell type of the nucleus accumbens (NAc), a key brain reward region. We recently showed that suppression of Rac1, a small GTPase, is a critical mediator of this structural plasticity, but the upstream determinants of Rac1 activity in(More)
Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here, we show that repeated cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. We show further, using viral-mediated gene transfer, that(More)
Memory, the ability to retain learned information, is necessary for survival. Thus far, molecular and cellular investigations of memory formation and storage have mainly focused on neuronal mechanisms. In addition to neurons, however, the brain comprises other types of cells and systems, including glia and vasculature. Accordingly, recent experimental work(More)
  • 1