Learn More
The DustBot project is aimed at designing, developing, testing and demonstrating a system for improving the management of urban hygiene based on a network of autonomous and cooperating robots, embedded in an Ambient Intelligence (AmI) infrastructure. In the final scenario, the robots will be able to operate in partially unstructured environments (such as(More)
We describe the design and control of a new bio-inspired climbing robot designed to scale smooth vertical surfaces using directional adhesive materials. The robot, called Stickybot, draws its inspiration from geckos and other climbing lizards and employs similar compliance and force control strategies to climb smooth vertical surfaces including glass, tile(More)
This paper reports the rationale and design of a robotic arm, as inspired by an octopus arm. The octopus arm shows peculiar features, such as the ability to bend in all directions, to produce fast elongations, and to vary its stiffness. The octopus achieves these unique motor skills, thanks to its peculiar muscular structure, named muscular hydrostat.(More)
Especially in robotics, rarely plants have been considered as a model of inspiration for designing and developing new technology. This is probably due to their radically different operational principles compared to animals and the difficulty to study their movements and features. Owing to the sessile nature of their lifestyle, plants have evolved the(More)
This work describes the design and experimental results of an algorithm, designed to localize a gas source in an indoor environment with no strong airflow by using an autonomous agent. This condition exacerbates the patchiness and intermittency of odor distribution, typical of turbulent flows in the presence of strong mean flows. Furthermore, no information(More)
– In the framework of DustBot European project, aimed at developing a new multi-robot system for urban hygiene management, we have developed a two-wheeled robot: DustCart. DustCart aims at providing a solution to door-to-door garbage collection: the robot, called by a user, navigates autonomously to his/her house; collects the garbage from the user and(More)
This paper presents the design of a biologically-inspired algorithm, as well as the design and development of a new highly flexible multi-agent platform for a cooperative robotic system, to be applied to the localization of a gas source in an indoor environment with no strong airflow. The platform consists of a central PC and a variable number of robots.(More)
Oxidative stress has been found to play a key role in several diseases, that range from cancer to neurodegenerative disorders. Besides traditional anti-oxidant agents, in recent years much attention has been focused on nanotechnological solutions, including cerium oxide nanoparticles (nanoceria). Thanks to its extraordinary catalytic properties, nanoceria(More)
In this paper we address the problem of autonomously localizing multiple gas/odor sources in an indoor environment without a strong airflow. To do this, a robot iteratively creates an occupancy grid map. The produced map shows the probability each discrete cell contains a source. Our approach is based on a recent adaptation [15] to traditional Bayesian(More)
– This paper describes the design of a biologically-inspired SPIRAL (Searching Pollutant Iterative Rounding ALgorithm) algorithm, for the localization of a gas source in an indoor environment with no strong airflow. Such environment shows a few aspects that make the issue of finding an odor source much harder than in the presence of a strong wind. In fact,(More)