Learn More
There is an increasing body of evidence that suggests that genes involved in cell fate decisions and pattern formation during development also play a key role in the continuous cell fate decisions made by adult tissue stem cells. Here we show that prolonged in vitro culture (14 days) of murine bone marrow lineage negative cells in medium supplemented with(More)
Several recent studies have suggested that the adult bone marrow harbors cells that can influence beta-cell regeneration in diabetic animals. Other reports, however, have contradicted these findings. To address this issue, we used an animal model of type 1 diabetes in which the disease was induced with streptozotocin in mice. Freshly prepared sex-mismatched(More)
Galectin-1 is a member of the family of beta-galactoside binding animal lectins, galectins. Its presence in the bone marrow has been detected; however, its role in the regulation of hematopoiesis is unknown. In the present study, we have evaluated the effect of recombinant human galectin-1 on the proliferation and survival of murine and human hematopoietic(More)
Aging is accompanied by reduced regenerative capacity of all tissues and organs and dysfunction of adult stem cells. Notably, these age-related alterations contribute to distinct pathophysiological characteristics depending on the tissue of origin and function and thus require special attention in a type by type manner. In this paper, we review the current(More)
Myelodysplastic syndromes (MDSs) are a heterogeneous group of hematological disorders characterized by ineffective hematopoiesis, enhanced bone marrow apoptosis and frequent progression to acute myeloid leukemia. Several recent studies suggested that, besides the abnormal development of stem cells, microenvironmental alterations are also present in the MDS(More)
Stem cells reside in customized microenvironments (niches) that contribute to their unique ability to divide asymmetrically to give rise to self and to a daughter cell with distinct properties. Notch receptors and their ligands are highly conserved and have been shown to regulate cell-fate decisions in multiple developmental systems through local cell(More)
Mesenchymal stem cells (MSC) - isolated from various tissues in humans and other species - are one of the most promising adult stem cell types due to their availability and the relatively simple requirements for in vitro expansion. They have the capacity to differentiate into several tissues, including bone, cartilage, tendon, muscle and adipose, and(More)
Two characteristics define a hematopoietic stem cell: the ability to differentiate into all hematopoietic lineages, and the ability to maintain hematopoiesis over a life span by a self-renewal process. The mechanisms that regulate the fate of blood-forming cells in vivo, however, are poorly understood. Despite the ability to culture hematopoietic progenitor(More)
Curative therapy for diabetes mellitus mainly implies replacement of missing insulin-producing pancreatic beta cells, with pancreas or islet-cell transplants. The limited supply currently available from cadaveric donor islets for transplantation, however, determines that researchers must explore alternative sources of graft material. Stem cells represent a(More)
In the early stages of embryonic development, cells have the capability of dividing indefinitely and then differentiating into any type of cell in the body. Recent studies have revealed that much of this remarkable developmental potential of stem cells is retained by small populations of cells within most tissues in the adult. Intercellular signals that(More)