Violet Oloibiri

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
The present work investigates the potential of coagulation-flocculation and ozonation to pretreat biologically stabilized landfill leachate before granular activated carbon (GAC) adsorption. Both iron (III) chloride (FeCl3) and polyaluminium chloride (PACl) are investigated as coagulants. Better organic matter removal is observed when leachate was treated(More)
The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange.(More)
Several scenarios are available to landfilling facilities to effectively treat leachate at the lowest possible cost. In this study, the performance of various leachate treatment sequences to remove COD and nitrogen from a leachate stream and the associated cost are presented. The results show that, to achieve 100% nitrogen removal, autotrophic nitrogen(More)
A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate(More)
Ozonation was investigated as a potential post-treatment step for biologically treated landfill leachate to enhance the biodegradability and observe the influence of the initial organic matter concentration and pH. Changes in COD, UV absorption at 254 nm (UVA254) and BOD content were measured during and after ozonation, and the ozone utilisation efficiency(More)
  • 1