Violaine Louvet

Learn More
We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts,(More)
We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive fronts,(More)
Parameter estimation in non linear mixed effects models requires a large number of evaluations of the model to study. For ordinary differential equations, the overall computation time remains reasonable. However when the model itself is complex (for instance when it is a set of partial differential equations) it may be time consuming to evaluate it for a(More)
Numerical simulations of multi-scale phenomena are commonly used for modeling purposes in many applications such as combustion, chemical vapor deposition, or air pollution modeling. In general, all these models raise several difficulties created by the high number of unknowns, the wide range of temporal scales due to large and detailed chemical kinetic(More)
We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reaction fronts,(More)
This article contains the three contributions of the mini-symposium about MOOCs (Massive Open Online Courses) organized by Violaine Louvet (Institut Camille Jordan, CNRS). The first contribution is from Alain Mille from LIRIS, about the main research questions on this new way of learning. The second one is from Marc Buffat, LMFA. He reviews some open source(More)
A new solver featuring time-space adaptation and error control has been recently introduced to tackle the numerical solution of stiff reaction-diffusion systems. Based on operator splitting, finite volume adaptive multiresolution and high order time integrators with specific stability properties for each operator, this strategy yields high computational(More)
  • 1