Vinothini Subramaniam

Learn More
Little is known about the integral membrane proteins that participate in the early secretory pathway of mammalian cells. The complementary DNA encoding a 28-kilodalton protein (p28) of the cis-Golgi was cloned and sequenced. The protein was predicted to contain a central coiled-coil domain with a carboxyl-terminal membrane anchor. An in vitro assay for(More)
Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25(More)
In eukaryotic cells, the Golgi apparatus receives newly synthesized proteins from the endoplasmic reticulum (ER) and delivers them after covalent modification to their destination in the cell. These proteins move from the inside (cis) face to the plasma-membrane side (trans) of the Golgi, through a stack of cisternae, towards the trans-Golgi network (TGN),(More)
cDNA clones encoding a novel protein (VAMP5) homologous to synaptobrevins/VAMPs are detected during database searches. The predicted 102-amino acid VAMP5 harbors a 23-residue hydrophobic region near the carboxyl terminus and exhibits an overall amino acid identity of 33% with synaptobrevin/VAMP1 and 2 and cellubrevin. Northern blot analysis reveals that the(More)
Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) GS28 and syntaxin 5 can be reciprocally coimmunoprecipitated from Golgi extracts, suggesting that they exist in a protein complex. When Golgi extract is preincubated with soluble NSF attachment proteins (alpha-SNAP) and N-ethylmaleimide-sensitive factor (NSF) under(More)
The human cytochrome P450 (CYP) is a superfamily of enzymes that have been a focus in research for decades due to their prominent role in drug metabolism. CYP2C is one of the major subfamilies which metabolize more than 10% of all clinically used drugs. In the context of CYP2C19, several key genetic variations that alter the enzyme's activity have been(More)
  • 1