Vineetha Jayawarna

Learn More
Aromatic short peptide derivatives, i.e. peptides modified with aromatic groups such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into self-supporting hydrogels. These hydrogels have some similarities to extracellular matrices due to their high hydration, relative stiffness and nanofibrous architecture. We previously demonstrated that(More)
To facilitate metabolomics analysis of stem cell differentiation, Alakpa et al. designed supramolecular hydrogels with tunable stiffness but simple chemical functionality. These gels facilitate stiffness-tuned stem cell differentiation without having to rely on biochemical functionalization. They could be used for surveying the usage of biological small(More)
Nanoparticles (NPs) are currently being developed as vehicles for in vivo drug delivery. Two of the biggest barriers facing this therapy are the site-specific targeting and consequent cellular uptake of drug-loaded NPs(1). In vitro studies in 2D cell cultures have shown that an external magnetic field (MF) and functionalization with cell-penetrating(More)
The design of self-assembled peptide-based structures for three-dimensional cell culture and tissue repair has been a key objective in biomaterials science for decades. In search of the simplest possible peptide system that can self-assemble, we discovered that combinations of di-peptides that are modified with aromatic stacking ligands could form(More)
For the development of applications and novel uses for peptide nanostructures, robust routes for their surface functionalization, that ideally do not interfere with their self-assembly properties, are required. Many existing methods rely on covalent functionalization, where building blocks are appended with functional groups, either pre- or post-assembly. A(More)
Differentiation of stem cells to chondrocytes in vitro usually results in a heterogeneous phenotype. This is evident in the often detected over expression of type X collagen which, in hyaline cartilage structure is not characteristic of the mid-zone but of the deep-zone ossifying tissue. Methods to better match cartilage developed in vitro to characteristic(More)
  • 1