Learn More
We develop a model for timed, reactive computation by extending the asynchronous, untimed concurrent constraint programming model in a simple and uniform way. In the spirit of process algebras, we develop some combinators expressible in this model, and reconcile their operational, logical and denotational character. We show how programs may be compiled into(More)
The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of probabilistic processes. In a situation where the process(More)
Focal segmental glomerulosclerosis (FSGS) is a cause of proteinuric kidney disease, compromising both native and transplanted kidneys. Treatment is limited because of a complex pathogenesis, including unknown serum factors. Here we report that serum soluble urokinase receptor (suPAR) is elevated in two-thirds of subjects with primary FSGS, but not in people(More)
We observe that equivalence is not a robust concept in the presence of numerical information such as probabilities in the model. We develop a metric analogue of weak bisimulation in the spirit of our earlier work on metric analogues for strong bisimulation. We give a fixed point characterization of the metric. This makes available coinductive reasoning(More)
Synchronous programming (Berry (1989)) is a powerful approach to programming reactive systems. Following the idea that “processes are relations extended over time” (Abramsky (1993)), we propose a simple but powerful model for timed, determinate computation, extending the closure-operator model for untimed concurrent constraint programming (CCP). In(More)
Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss(More)
Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various(More)
We de ne robust timed automata, which are timed automata that accept all trajectories \robustly": if a robust timed automaton accepts a trajectory, then it must accept neighboring trajectories also; and if a robust timed automaton rejects a trajectory, then it must reject neighboring trajectories also. We show that the emptiness problem for robust timed(More)
We study approximate reasoning about continuous-state labeled Markov processes. We show how to approximate a labeled Markov process by a family of finite-state labeled Markov chains. We show that the collection of labeled Markov processes carries a Polish space structure with a countable basis given by finite state Markov chains with rational probabilities.(More)
Abatacept (cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin fusion protein [CTLA-4-Ig]) is a costimulatory inhibitor that targets B7-1 (CD80). The present report describes five patients who had focal segmental glomerulosclerosis (FSGS) (four with recurrent FSGS after transplantation and one with primary FSGS) and proteinuria with B7-1(More)