Vincenzo Sorrentino

Learn More
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia is a genetic arrhythmogenic disorder characterized by stress-induced, bidirectional ventricular tachycardia that may degenerate into cardiac arrest and cause sudden death. The electrocardiographic pattern of this ventricular tachycardia closely resembles the arrhythmias associated with calcium(More)
Ryanodine receptors (RyRs) are intracellular calcium release channels that participate in controlling cytosolic calcium levels. At variance with the probably ubiquitous inositol 1,4,5-trisphosphate-operated calcium channels (1,4,5-trisphosphate receptors), RyRs have been mainly regarded as the calcium release channels controlling skeletal and cardiac muscle(More)
Assembly of specialized membrane domains, both of the plasma membrane and of the ER, is necessary for the physiological activity of striated muscle cells. The mechanisms that mediate the structural organization of the sarcoplasmic reticulum with respect to the myofibrils are, however, not known. We report here that ank1.5, a small splice variant of the ank1(More)
We have cloned a novel c-kit mRNA of 3.2 kb expressed in postmeiotic male germ cells. This transcript initiates in the genomic region immediately upstream of the exon coding for the second box of the split c-kit tyrosine kinase domain. The open reading frame (ORF) contains 12 novel amino acids in frame with the C-terminal 190 amino acids of the c-kit(More)
We investigated the interaction of the 12 kDa FK506-binding protein (FKBP12) with two ryanodine-receptor isoforms (RyR1 and RyR3) and with two myo-inositol 1,4,5-trisphosphate (IP3) receptor isoforms (IP3R1 and IP3R3). Using glutathione S-transferase (GST)-FKBP12 affinity chromatography, we could efficiently extract RyR1 (42+/-7% of the solubilized RyR1)(More)
Intracellular Ca(2+) levels control both contraction and relaxation in vascular smooth muscle cells (VSMCs). Ca(2+)-dependent relaxation is mediated by discretely localized Ca(2+) release events through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These local increases in Ca(2+) concentration, termed sparks, stimulate nearby(More)
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well(More)
To define the relationship between the two ryanodine receptor (RyR) isoforms present in chicken skeletal muscle, we cloned two groups of cDNAs encoding the chicken homologues of mammalian RyR1 and RyR3. Equivalent amounts of the two chicken isoform mRNAs were detected in thigh and pectoral skeletal muscles. RyR1 and RyR3 mRNAs were co-expressed in testis(More)
The skeletal isoform of Ca2+ release channel, RyR1, plays a central role in activation of skeletal muscle contraction. Another isoform, RyR3, has been observed recently in some mammalian skeletal muscles, but whether it participates in regulating skeletal muscle contraction is not known. The expression of RyR3 in skeletal muscles was studied in mice from(More)
This study compared the relative levels of ryanodine receptor (RyR) isoforms, inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms, and calcineurin, plus their association with FKBP12 in brain, skeletal and cardiac tissue. FKBP12 demonstrated a very tight, high affinity association with skeletal muscle microsomes, which was displaced by FK506. In(More)