Learn More
Moving and spatial learning are two intertwined processes: (a) changes in movement behavior determine the learning of the spatial environment, and (b) information plays a crucial role in several animal decision-making processes like movement decisions. A useful way to explore the interactions between movement decisions and learning of the spatial(More)
1. Natal dispersal has the potential to affect most ecological and evolutionary processes. However, despite its importance, this complex ecological process still represents a significant gap in our understanding of animal ecology due to both the lack of empirical data and the intrinsic complexity of dispersal dynamics. 2. By studying natal dispersal of 74(More)
BACKGROUND Island faunas have played central roles in the development of evolutionary biology and ecology. Birds are among the most studied organisms on islands, in part because of their dispersal powers linked to migration. Even so, we lack of information about differences in the movement ecology of island versus mainland populations of birds. (More)
Superpredation can increase the length of the food chain and potentially lead to mercury (Hg) bioaccumulation in top predators. We analysed the relationship of Hg concentrations in eagle owls Bubo bubo to diet composition and the percentage of mesopredators in the diet. Hg levels were measured in the adult feathers of eagle owls from 33 owl territories in(More)
Within the field of spatial ecology, it is important to study animal movements in order to better understand population dynamics. Dispersal is a nonlinear process through which different behavioral mechanisms could affect movement patterns. One of the most common approaches to analyzing the trajectories of organisms within patches is to use random-walk(More)
Lethal interactions among large vertebrate predators have long interested researchers because of ecological and conservation issues. Research focusing on lethal interactions among vertebrate top predators has used several terms with a broad sense, and also introduced new terminology. We analysed the published literature with reference to the main underlying(More)
survival affects population persistence. The role of prey availability and environmental stochasticity. Á/ Oikos 108: 523 Á/534. We develop two individual-based models using a large and detailed data set (information gathered over more than a century) on a population of a longlived and territorial predator, the Spanish imperial eagle. We investigated the(More)
Predatory interactions among top predators, like superpredation or intraguild predation (IGP), can influence community structure. Diurnal raptors occupy high trophic levels in terrestrial food webs, and thus can regulate the presence of mesopredators. We studied superpredation (the killing and eating of another predator) in four large European raptors. We(More)
Animal territories that differ in the availability of food resources will require (all other things being equal) different levels of effort for successful reproduction. As a consequence, breeding performance may become most strongly dependent on factors that affect individual foraging where resources are poor. We investigated potential links between(More)
After some 70 years of debate on density-dependent regulation of animal populations, there is still poor understanding of where spatial and temporal density dependence occurs. Clearly defining the portion of the population that shapes density-dependent patterns may help to solve some of the ambiguities that encircle density dependence and its patterns. In(More)