Vincenzo Bonnici

Learn More
Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer(More)
Graphs can represent biological networks at the molecular, protein, or species level. An important query is to find all matches of a pattern graph to a target graph. Accomplishing this is inherently difficult (NP-complete) and the efficiency of heuristic algorithms for the problem may depend upon the input graphs. The common aim of existing algorithms is to(More)
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular mRNAs. A significant amount of miRNAs has been found in extracellular human body fluids (e.g. plasma and serum) and some circulating miRNAs in the blood have been successfully revealed as(More)
The identification of drug-target interactions (DTI) is a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Algorithms may aim to design new therapies based on a single approved drug or a combination of them. Recently, recommendation methods relying on(More)
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have(More)
We present NetMatchStar, a Cytoscape app to find all the occurrences of a query graph in a network and check for its significance as a motif with respect to seven different random models. The query can be uploaded or built from scratch using Cytoscape facilities. The app significantly enhances the previous NetMatch in style, performance and functionality.(More)
Graphs are mathematical structures to model several biological data. Applications to analyze them require to apply solutions for the subgraph isomorphism problem, which is NP-complete. Here, we investigate the existing strategies to reduce the subgraph isomorphism algorithm running time with emphasis on the importance of the order with which the graph(More)
In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic(More)
MOTIVATION Biological network querying is a problem requiring a considerable computational effort to be solved. Given a target and a query network, it aims to find occurrences of the query in the target by considering topological and node similarities (i.e. mismatches between nodes, edges, or node labels). Querying tools that deal with similarities are(More)