Vincent van Laak

Learn More
Legionella pneumophila, a Gram-negative facultative intracellular bacterium, causes severe pneumonia (Legionnaires' disease). Type I interferons (IFNs) were so far associated with antiviral immunity, but recent studies also indicated a role of these cytokines in immune responses against (intracellular) bacteria. Here we show that wild-type L. pneumophila(More)
Legionella pneumophila causes severe pneumonia. Acetylation of histones is thought to be an important regulator of gene transcription, but its impact on L. pneumophila-induced expression of proinflammatory cytokines is unknown. L. pneumophila strain 130b induced the expression of the important chemoattractant IL-8 and genome-wide histone modifications in(More)
Intracellular bacteria and cytosolic stimulation with DNA activate type I IFN responses independently of Toll-like receptors, most Nod-like receptors and RIG-like receptors. A recent study suggested that ZBP1 (DLM-1/DAI) represents the long anticipated pattern recognition receptor which mediates IFNalpha/beta responses to cytosolic DNA in mice. Here we show(More)
Streptococcus pneumoniae is the major cause of community-acquired pneumonia and one of the most common causes of death by infectious disease in industrialized countries. Little is known concerning the mechanisms of target cell activation in this disease. The present study shows that NF-kappaB and p38 MAPK signaling pathways contribute to chemokine synthesis(More)
Diseases of the respiratory tract are among the leading causes of death in the world population. Increasing evidence points to a key role of the innate immune system with its pattern recognition receptors (PRRs) in both infectious and noninfectious lung diseases, which include pneumonia, chronic obstructive pulmonary disease, acute lung injury,(More)
Nucleotide-binding oligomerization domain (Nod) proteins serve as intracellular pattern recognition molecules recognizing peptidoglycans. To further examine intracellular immune recognition, we used Listeria monocytogenes as an organism particularly amenable for studying innate immunity to intracellular pathogens. In contrast to wild-type L. monocytogenes,(More)
Community-acquired pneumonia (CAP) is associated with high morbidity and mortality, and Streptococcus pneumoniae is the most prevalent causal pathogen identified in CAP. Impaired pulmonary host defense increases susceptibility to pneumococcal pneumonia. S. pneumoniae may up-regulate Toll-like receptor (TLR)-2 expression and activate TLR-2, contributing to(More)
Chlamydophila pneumoniae infection of the vascular wall as well as activation of the transcription factor IFN regulatory factor (IRF)3 have been linked to development of chronic vascular lesions and atherosclerosis. The innate immune system detects invading pathogens by use of pattern recognition receptors, some of which are able to stimulate IRF3/7(More)
Epigenetic histone modifications contribute to the regulation of eukaryotic gene transcription. The role of epigenetic regulation in immunity to intracellular pathogens is poorly understood. We tested the hypothesis that epigenetic histone modifications influence cytokine expression by intracellular bacteria. Intracellular Listeria monocytogenes, but not(More)
Moraxella catarrhalis is a major cause of infectious exacerbations of chronic obstructive lung disease (COPD) and may also contribute to the pathogenesis of COPD. Little is known about M. catarrhalis-bronchial epithelium interaction. We investigated activation of M. catarrhalis infected bronchial epithelial cells and characterized the signal transduction(More)