Learn More
We propose a general self-stabilizing scheme for solving any synchronization problem whose safety specification can be defined using a local property. We demonstrate the versatility of our scheme by showing that very memory-efficient solutions to many well-known problems (e.g., asynchronous phase clock, local mutual exclusion, local reader-writers, and(More)
In this paper, we introduce the notion of snap-stabilization. A snap-stabilizing algorithm protocol guarantees that, starting from an arbitrary system configuration, the protocol always behaves according to its specification. So, a snap-stabilizing protocol is a self-stabilizing protocol which stabilizes in 0 steps. We propose a snap-stabilizing Propagation(More)
Leader election and arbitrary pattern formation are fundammental tasks for a set of autonomous mobile robots. The former consists in distinguishing a unique robot, called the leader. The latter aims in arranging the robots in the plane to form any given pattern. The solvability of both these tasks turns out to be necessary in order to achieve more complex(More)
We present a deterministic distributed Propagation of Information with Feedback (PIF) protocol in arbitrary rooted networks. The proposed algorithm does not use a pre-constructed spanning tree. The protocol is self-stabilizing, meaning that starting from an arbitrary state (in response to an arbitrary perturbation modifying the memory state), it is(More)
The contribution of this paper is threefold. First, we present the paradigm of snap-stabilization. A snap- stabilizing protocol guarantees that, starting from an arbitrary system configuration, the protocol always behaves according to its specification. So, a snap-stabilizing protocol is a time optimal self-stabilizing protocol (because it stabilizes in 0(More)
Abstract. We present a deterministic distributed depth-first token passing protocol on a rooted network. This protocol uses neither the processor identifiers nor the size of the network, but assumes the existence of a distinguished processor, called the root of the network. The protocol is self-stabilizing, meaning that starting from an arbitrary state (in(More)
The notion of self-stabilization was rst introduced by Dijkstra : it is the property for a system to eventually recover itself a legitimate state after any perturbation modifying the memory state. This paper proposes a self-stabilizing depth-rst token circulation protocol for uniform rooted networks. Such an algorithm is very convenient to obtain the mutual(More)