Vincent Studer

Learn More
The purification of nucleic acids from microbial and mammalian cells is a crucial step in many biological and medical applications. We have developed microfluidic chips for automated nucleic acid purification from small numbers of bacterial or mammalian cells. All processes, such as cell isolation, cell lysis, DNA or mRNA purification, and recovery, were(More)
The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices--especially in optics--have only started being addressed. This paper presents(More)
Using basic physical arguments, we present a design and method for the fabrication of microfluidic valves using multilayer soft lithography. These on-off valves have extremely low actuation pressures and can be used to fabricate active functions, such as pumps and mixers in integrated microfluidic chips. We characterized the performance of the valves by(More)
Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and(More)
Difficulties in culturing cells inside microchannels is a major obstacle for the wide use of microfluidic technology in cell biology. Here, we present a simple and versatile method to interface closed microchannels with cellular and multicellular systems. Our approach, based on microfluidic stickers which can adhere to wet glass coverslips, eliminates the(More)
The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation(More)
and the values they have taught, and for instilling in me a drive to " do my best " in whatever I choose to do. iv Acknowledgements This work would not have been possible without the help and support of many individuals. the opportunity to work in an exciting multidisciplinary lab on a variety of interesting projects. The past several years have enabled me(More)
We introduce a simple and versatile microfluidic drop-on-demand solution that enables independent and dynamical control of both the drop size and the drop production rate. To do so, we combine a standard microfluidic T-junction and a novel active switching component that connects the microfluidic channel to the macroscopic liquid reservoirs. Firstly, we(More)
Nerve growth cones (GCs) are chemical sensors that convert graded extracellular cues into oriented axonal motion. To ensure a sensitive and robust response to directional signals in complex and dynamic chemical landscapes, GCs are presumably able to amplify and filter external information. How these processing tasks are performed remains however poorly(More)