Learn More
The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices--especially in optics--have only started being addressed. This paper presents(More)
The purification of nucleic acids from microbial and mammalian cells is a crucial step in many biological and medical applications. We have developed microfluidic chips for automated nucleic acid purification from small numbers of bacterial or mammalian cells. All processes, such as cell isolation, cell lysis, DNA or mRNA purification, and recovery, were(More)
Using basic physical arguments, we present a design and method for the fabrication of microfluidic valves using multilayer soft lithography. These on-off valves have extremely low actuation pressures and can be used to fabricate active functions, such as pumps and mixers in integrated microfluidic chips. We characterized the performance of the valves by(More)
Induced-charge electro-osmosis (ICEO) is demonstrated around an isolated platinum wire in a polymer microchannel filled with low-concentration KCl, subject to a weak alternating electric field. In contrast to ac electro-osmosis at electrode arrays, which shares the same slip mechanism, ICEO has a more general frequency dependence, including steady flow in(More)
5 We present how to make and assemble micro-patterned stickers (µ PS) to construct high performance plastic microfluidic devices in a few minutes. We take advantage of soft UV imprint techniques to tailor the geometry, the mechanical properties, and the surface chemistry of 2D and 3D microcircuits. The resulting microfluidic stickers substantially overcome(More)
Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and(More)
The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation(More)
We present a compressive video microscope based on structured illumination with incoherent light source. The source-side illumination coding scheme allows the emission photons being collected by the full aperture of the microscope objective, and thus is suitable for the fluorescence readout mode. A 2-step iterative reconstruction algorithm, termed BWISE,(More)
We introduce a simple and versatile microfluidic drop-on-demand solution that enables independent and dynamical control of both the drop size and the drop production rate. To do so, we combine a standard microfluidic T-junction and a novel active switching component that connects the microfluidic channel to the macroscopic liquid reservoirs. Firstly, we(More)
Nerve growth cones (GCs) are chemical sensors that convert graded extracellular cues into oriented axonal motion. To ensure a sensitive and robust response to directional signals in complex and dynamic chemical landscapes, GCs are presumably able to amplify and filter external information. How these processing tasks are performed remains however poorly(More)