Vincent R. Pantalone

Learn More
Soybean [Glycine max (L.) Merr.] is a versatile crop due to its multitude of uses as a high protein meal and vegetable oil. Soybean seed traits such as seed protein and oil concentration and seed size are important quantitative traits. The objective of this study was to identify representative protein, oil, and seed size quantitative trait loci (QTL) in(More)
Soybean [Glycine max (L.) Merr.] is the principal oilseed crop in the world. Soybean oil has various industrial and food applications. The quality of soybean oil is determined by its fatty acid composition. Palmitic, stearic, oleic, linoleic and linolenic are the predominant fatty acids in soybean oil. The objective of this study was to determine the(More)
Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein(More)
Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, few studies have been conducted to evaluate genomic regions controlling amino acid composition in soybean. It is important to study the genetics of amino acid composition to achieve improvements through breeding. The objectives of this study were to determine(More)
Increasing the stearic acid content to improve soybean [Glycine max (L) Merr] oil quality is a desirable breeding objective for food-processing applications. Although a saturated fatty acid, stearic acid has been shown to reduce total levels of blood cholesterol and offers the potential for the production of solid fat products (such as margarine) without(More)
Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, a major limitation of soy proteins is their deficiency in sulfur-containing amino acids, methionine (Met) and cysteine (Cys). The objective of this study was to identify quantitative trait loci (QTL) associated with Met and Cys concentration in soybean seed. To(More)
Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Information about the molecular basis of soybean–SCN interactions is needed to assist future development of effective management tools against this pathogen. Toward this end, soybean transcript abundance was measured using the Affymetrix Soybean Genome Array in a susceptible and a(More)
Soybean meal is the most commonly used protein source in animal feeds. Among the undesirable attributes of soybean meal is the high level of β-mannan, which was determined to be detrimental to the growth performance of animals. β-Mannan is a type of hemicellulose in the plant cell wall and can be hydrolyzed by endo-β-mannanase. The goal of this study is to(More)
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera(More)
Diversity for chloride tolerance exists among accessions of perennial Glycine. Accessions whose tolerance thresholds exceed those of Glycine max cultivars may be useful germplasm resources. Soybean cultivars including ‘Jackson’ (sensitive) and ‘Lee’ (tolerant) and 12 accessions of perennial Glycine were evaluated for sodium chloride tolerance after 14 days(More)