Learn More
Soybean [Glycine max (L.) Merr.] is a versatile crop due to its multitude of uses as a high protein meal and vegetable oil. Soybean seed traits such as seed protein and oil concentration and seed size are important quantitative traits. The objective of this study was to identify representative protein, oil, and seed size quantitative trait loci (QTL) in(More)
Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, a major limitation of soy proteins is their deficiency in sulfur-containing amino acids, methionine (Met) and cysteine (Cys). The objective of this study was to identify quantitative trait loci (QTL) associated with Met and Cys concentration in soybean seed. To(More)
Soybean meal is the most commonly used protein source in animal feeds. Among the undesirable attributes of soybean meal is the high level of β-mannan, which was determined to be detrimental to the growth performance of animals. β-Mannan is a type of hemicellulose in the plant cell wall and can be hydrolyzed by endo-β-mannanase. The goal of this study is to(More)
Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Information about the molecular basis of soybean-SCN interactions is needed to assist future development of effective management tools against this pathogen. Toward this end, soybean transcript abundance was measured using the Affymetrix Soybean Genome Array in a susceptible and a(More)
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera(More)
This study explored the feasibility of near-infrared (NIR) quantitative and qualitative models for soybean inorganic phosphorus (Pi), which is complementary to phytic acid, a component of nutritional and environmental importance. Spectra, consisting of diffuse reflectance (1100-2500 nm) of ground meal and single-bean transmittance (600-1900 nm) of whole(More)
Increasing the stearic acid content to improve soybean [ Glycine max (L) Merr] oil quality is a desirable breeding objective for food-processing applications. Although a saturated fatty acid, stearic acid has been shown to reduce total levels of blood cholesterol and offers the potential for the production of solid fat products (such as margarine) without(More)
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced(More)
Twelve isoflavones were detected by high-performance liquid chromatography in seeds of 17 soybean [Glycine max (L.) Merrill] cultivars grown at three locations. 6' '-O-Malonyldaidzin and 6' '-O-malonylgenistin together constituted 71-81% of total isoflavones, which ranged in concentration from 2038 to 9514 microg/g and averaged 5644 microg/g across(More)
and a decreasing supply (Golbitz, 1999), suggest that oil productivity of soybean should be improved. Previous Protein meal and oil are the two commodities produced from research indicated that seed oil concentration is con-soybean [Glycine max (L.) Merr.] that give the crop its value. Increasing seed concentrations of either or both may add value.(More)