Learn More
Conifers are long-lived organisms, and part of their success is due to their potent defense mechanisms. This review focuses on bark defenses, a front line against organisms trying to reach the nutrient-rich phloem. A major breach of the bark can lead to tree death, as evidenced by the millions of trees killed every year by specialized bark-invading insects.(More)
CmPP16 from Cucurbita maxima was cloned and the protein was shown to possess properties similar to those of viral movement proteins. CmPP16 messenger RNA (mRNA) is present in phloem tissue, whereas protein appears confined to sieve elements (SE). Microinjection and grafting studies revealed that CmPP16 moves from cell to cell, mediates the transport of(More)
Calcium oxalate (CaOx) crystals are distributed among all taxonomic levels of photosynthetic organisms from small algae to angiosperms and giant gymnosperms. Accumulation of crystals by these organisms can be substantial. Major functions of CaOx crystal formation in plants include high-capacity calcium (Ca) regulation and protection against herbivory.(More)
Rice prolamines are sequestered within the endoplasmic reticulum (ER) lumen even though they lack a lumenal retention signal. Immunochemical and biochemical data show that BiP, a protein that binds lumenal polypeptides, is localized on the surface of the aggregated prolamine protein bodies (PBs). BiP also forms complexes with nascent chains of prolamines in(More)
Sucrose transport from the apoplasm, across the plasma membrane, and into the symplast is critical for growth and development in most plant species. Phloem loading, the process of transporting sucrose against a concentration gradient into the phloem, is an essential first step in long-distance transport of sucrose and carbon partitioning. We report here(More)
The leaf sucrose transporter SUT1 is essential for phloem loading and long-distance transport of assimilates. Both SUT1 messenger RNA (mRNA) and protein were shown to be diurnally regulated and to have high turnover rates. SUT1 protein was detected by immunolocalization in plasma membranes of enucleate sieve elements (SEs) in tobacco, potato, and tomato.(More)
The efficiency of photosynthetic carbon assimilation in higher plants faces significant limitations due to the oxygenase activity of the enzyme Rubisco, particularly under warmer temperatures or water stress. A drop in atmospheric CO(2) and rise in O(2) as early as 300 mya provided selective pressure for the evolution of mechanisms to concentrate CO(2)(More)
Critical to defining photosynthesis in C(4) plants is understanding the intercellular and intracellular compartmentation of enzymes between mesophyll and bundle sheath cells in the leaf. This includes enzymes of the C(4) cycle (including three subtypes), the C(3) pathway and photorespiration. The current state of knowledge of this compartmentation is a(More)
A major goal currently in Arabidopsis research is determination of the (biochemical) function of each of its approximately 27,000 genes. To date, however, 12% of its genes actually have known biochemical roles. In this study, we considered it instructive to identify the gene expression patterns of nine (so-called AtCAD1-9) of 17 genes originally annotated(More)
An important adaptation to CO2-limited photosynthesis in cyanobacteria, algae and some plants was development of CO2-concentrating mechanisms (CCM). Evolution of a CCM occurred many times in flowering plants, beginning at least 15-20 million years ago, in response to atmospheric CO2 reduction, climate change, geological trends, and evolutionary(More)