Vincent Meunier

Learn More
Graphene nanoribbons can exhibit either quasi-metallic or semiconducting behavior, depending on the atomic structure of their edges. Thus, it is important to control the morphology and crystallinity of these edges for practical purposes. We demonstrated an efficient edge-reconstruction process, at the atomic scale, for graphitic nanoribbons by Joule(More)
Recent experiments have shown that the capacitance of subnanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we(More)
Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS)(More)
We study molecular transistors where graphene nanoribbons act as three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that these nanostructures exhibit exponentially small transmission when the(More)
We demonstrate a controllable surface-coordinated linear polymerization of long-chain poly(phenylacetylenyl)s that are self-organized into a "circuit-board" pattern on a Cu(100) surface. Scanning tunneling microscopy/spectroscopy (STM/S) corroborated by ab initio calculations, reveals the atomistic details of the molecular structure, and provides a clear(More)
We propose a novel class of nonvolatile memory elements based on the modification of the transport properties of a conducting carbon nanotube by the presence of an encapsulated molecule. The guest molecule has two stable orientational positions relative to the nanotube that correspond to conducting and nonconducting states. The mechanism, governed by a(More)
Raman spectra of MoS2, WS2, and their heterostructures are studied by density functional theory. We quantitatively reproduce existing experimental data and present evidence that the apparent discrepancy between intensity ratios observed experimentally can be explained by the high sensitivity of the Raman-active modes to laser polarization. Furthermore,(More)
One of the great challenges in surface chemistry is to assemble aromatic building blocks into ordered structures that are mechanically robust and electronically interlinked--i.e., are held together by covalent bonds. We demonstrate the surface-confined growth of ordered arrays of poly(3,4-ethylenedioxythiophene) (PEDOT) chains, by using the substrate (the(More)
Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and(More)
Most of the works devoted so far to the electronic band structure of multi-wall nanotubes have been restricted to the case where the individual layers have the same helicity. By comparison, much less is known on the electronic properties of multiwall nanotubes that mix different helicities. These are interesting systems, however, since they can be composed(More)