Learn More
We introduce a new trust-region method for unconstrained optimization where the radius update is computed using the model information at the current iterate rather than at the preceding one. The update is then performed according to how well the current model retrospectively predicts the value of the objective function at last iterate. Global convergence to(More)
We consider Hessian approximation schemes for large-scale unconstrained optimization in the context of discretized problems. The considered Hessians typically present a nontrivial sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating(More)
The properties of multilevel optimization problems defined on a hierarchy of discretization grids can be used to define approximate secant equations, which describe the second-order behaviour of the objective function. Following earlier work by Gratton and Toint (2009), we introduce a quasi-Newton method (with a linesearch) and a nonlinear conjugate(More)
We consider Hessian approximation schemes for large-scale multilevel unconstrained optimization problems, which typically present a sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating schemes based on the secant equation are presented(More)
  • 1