Vincent Luboz

Learn More
This paper addresses the prediction of face soft tissue deformations resulting from bone repositioning in maxillofacial surgery. A generic 3D Finite Element model of the face soft tissues was developed. Face muscles are defined in the mesh as embedded structures, with different mechanical properties (transverse isotropy, stiffness depending on muscle(More)
This paper aims at characterizing the mechanical behavior of two human anatomical structures, namely the tongue and the cheek. For this, an indentation experiment was provided, by measuring the mechanical response of tongue and cheek tissues removed from the fresh cadaver of a 74 year old woman. Non-linear relationships were observed between the force(More)
The base of all training in interventional radiology aims at the development of the core skills in manipulating the instruments. Computer simulators are emerging to help in this task. This paper extends our previous framework with more realistic instrument behaviour and more complex vascular models. The instrument is modelled as a hybrid mass–spring(More)
In-vivo characterization of soft tissue is a key step towards accurate biomechanical simulation enabling planning and intra-operative assisted surgery. This chapter presents the new version of LASTIC, a device measuring soft tissue deformations using a negative pressure. Its capabilities are compared with standard tensile tests on five samples with(More)
Commercial interventional radiology vascular simulators emulate instrument navigation and device deployment, though none supports the Seldinger technique, which provides initial access to the vascular tree. This paper presents a novel virtual environment for teaching this core skill. Our simulator combines two haptic devices: vessel puncture with a virtual(More)
We propose a technique to obtain accurate and smooth surfaces of patient specific vascular structures, using two steps: segmentation and reconstruction. The first step provides accurate and smooth centerlines of the vessels, together with cross section orientations and cross section fitting. The initial centerlines are obtained from a homotopic thinning of(More)
In the context of stroke therapy simulation, a method for the segmentation and reconstruction of human vasculature is presented and evaluated. Based on CTA scans, semi-automatic tools have been developed to reduce dataset noise, to segment using active contours, to extract the skeleton, to estimate the vessel radii and to reconstruct the associated surface.(More)
This paper presents a method to segment and reconstruct vascular structure from patient volumetric scan. First, a semi-automatic segmentation phase leads to the vessels centerlines and the estimated circular or elliptic cross section description. Then, the skeleton data are used by the reconstruction phase to generate the three dimensional vascular surface.(More)