Vincent Jacob

Learn More
Spike timing-dependent plasticity (STDP) is a computationally powerful form of plasticity in which synapses are strengthened or weakened according to the temporal order and precise millisecond-scale delay between presynaptic and postsynaptic spiking activity. STDP is readily observed in vitro, but evidence for STDP in vivo is scarce. Here, we studied spike(More)
In primary sensory cortices, neuronal responses to a stimulus presented as part of a rapid sequence often differ from responses to an isolated stimulus. It has been reported that sequential stimulation of two whiskers produces facilitatory modulations of barrel cortex neuronal responses. These results are at odds with the well-known suppressive interaction(More)
Most functional plasticity studies in the cortex have focused on layers (L) II/III and IV, whereas relatively little is known of LV. Structural measurements of dendritic spines in vivo suggest some specialization among LV cell subtypes. We therefore studied experience-dependent plasticity in the barrel cortex using intracellular recordings to distinguish(More)
Rats discriminate objects by scanning their surface with the facial vibrissae, producing spatiotemporally complex sequences of tactile contacts. The way in which the somatosensory cortex responds to these complex multivibrissal stimuli has not been explored. It is unclear yet whether contextual information from across the entire whisker pad influences(More)
The whisker to barrel system in rodents has become one of the major models for the study of sensory processing. Several tens of whiskers (or vibrissae) are distributed in a regular manner on both sides of the snout. Many tactile discrimination tasks using this system need multiple contacts with more than one whisker to be solved. With the aim of mimicking(More)
The tactile sensations mediated by the whisker-trigeminal system allow rodents to efficiently detect and discriminate objects. These capabilities rely strongly on the temporal and spatial structure of whisker deflections. Subthreshold but also spiking receptive fields in the barrel cortex encompass a large number of vibrissae, and it seems likely that the(More)
A computationally rich algorithm of synaptic plasticity has been proposed based on the experimental observation that the sign and amplitude of the change in synaptic weight is dictated by the temporal order and temporal contiguity between pre- and postsynaptic activities. For more than a decade, this spike-timing-dependent plasticity (STDP) has been studied(More)
The antennal lobe (AL) of the Noctuid moth Agrotis ipsilon has emerged as an excellent model for studying olfactory processing and its plasticity in the central nervous system. Odor-evoked responses of AL neurons and input-to-output transformations involved in pheromone processing are well characterized in this species. However, the intrinsic electrical(More)
Twelve t-butylperoxyamines (6-17) were synthesized as targeted antimalarials and evaluated for antimalarial activity in vivo against Plasmodium berghei in mice and in vitro against both chloroquine sensitive and chloroquine resistant strains of Plasmodium falciparum. Compound 8 was found to have highest potency with activity at 80 and 160mg/kg dose in vivo(More)