Vincent Hayward

Learn More
For control applications involving small displacements and velocities, friction modeling and compensation can be very important. In particular, the modeling of presliding displacement (motion prior to fully developed slip) can play a pivotal role. In this note, it is shown that existing single-state friction models exhibit a nonphysical drift phenomenon(More)
Haptic (touch) perception normally entails an active exploration of object surfaces over time. This is called active touch. When exploring the shape of an object, we experience both geometrical and force cues. For example, when sliding a finger across a surface with a rigid bump on it, the finger moves over the bump while being opposed by a force whose(More)
Haptic interfaces enable person-machine communication through touch, and most commonly, in response to user movements. We comment on a distinct property of haptic interfaces, that of providing for simultaneous information exchange between a user and a machine. We also comment on the fact that, like other kinds of displays, they can take advantage of both(More)
Current views on multisensory motion integration assume separate substrates where visual motion perceptually dominates tactile motion [1, 2]. However, recent neuroimaging findings demonstrate strong activation of visual motion processing areas by tactile stimuli [3-6], implying a potentially bidirectional relationship. To test the relationship between(More)
We present methods for velocity estimation from discrete and quantized position samples using adaptive windowing. Previous methods necessitate tradeoffs between noise reduction, control delay, estimate accuracy, reliability, computational load, transient preservation, and difficulties with tuning. In contrast, a first-order adaptive windowing method is(More)
This paper surveys more than twenty types of tactile illusions and discusses several of their aspects. These aspects include the ease with which they can be demonstrated and whether they have clear visual analogs. The paper also shows how to construct equipment made of simple supplies able to deliver well-controlled tactile signals in order to conveniently(More)
The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the(More)
In this paper, the auditory motion aftereffect (aMAE) was studied, using real moving sound as both the adapting and the test stimulus. The sound was generated by a loudspeaker mounted on a robot arm that was able to move quietly in three-dimensional space. A total of 7 subjects with normal hearing were tested in three experiments. The results from(More)
Mobile interaction can potentially be enhanced with well-designed haptic control and display. However, advances have been limited by a vicious cycle whereby inadequate haptic technology obstructs inception of vitalizing applications. We present the first stages of a systematic design effort to break that cycle, beginning with specific usage scenarios and a(More)