Vincent Fong

Learn More
Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand(More)
Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we(More)
Cardiac-specific overexpression of a constitutively active form of calcineurin A (CNA) leads directly to cardiac hypertrophy in the CNA mouse model. Because cardiac hypertrophy is a prominent characteristic of many cardiomyopathies, we deduced that delineating the proteomic profile of ventricular tissue from this model might identify novel, widely(More)
Defective mobilization of Ca2+ by cardiomyocytes can lead to cardiac insufficiency, but the causative mechanisms leading to congestive heart failure (HF) remain unclear. In the present study we performed exhaustive global proteomics surveys of cardiac ventricle isolated from a mouse model of cardiomyopathy overexpressing a phospholamban mutant, R9C(More)
High throughput methods are increasingly being used to examine the functions and interactions of gene products on a genome-scale. These include systematic large-scale proteomic studies of protein complexes and protein-protein interaction networks, functional genomic studies examining patterns of gene expression and comparative genomics studies examining(More)
Recent advances in mass spectrometry and bioinformatics have provided the means to characterize complex protein landscapes from a wide variety of organisms and cell types. Development of standard proteomes exhibiting all of the proteins involved in normal physiology will facilitate the delineation of disease mechanisms. Here, we examine the wild-type(More)
Tandem mass spectrometry is the prevailing approach for large-scale peptide sequencing in high-throughput proteomic profiling studies. Effective database search engines have been developed to identify peptide sequences from MS/MS fragmentation spectra. Since proteins are polymorphic and subject to post-translational modifications (PTM), however,(More)
The experimental isolation and characterization of stable multi-protein complexes are essential to understanding the molecular systems biology of a cell. To this end, we have developed a high-throughput proteomic platform for the systematic identification of native protein complexes based on extensive fractionation of soluble protein extracts by multi-bed(More)
Effective methods to detect and quantify functionally linked regulatory proteins in complex biological samples are essential for investigating mammalian signaling pathways. Traditional immunoassays depend on proprietary reagents that are difficult to generate and multiplex, whereas global proteomic profiling can be tedious and can miss low abundance(More)
BACKGROUND The full length Rad51 promoter is highly active in cancer cells but not in normal cells. We therefore set out to assess whether we could confer this tumor-selectivity to an adenovirus vector. METHODOLOGY/PRINCIPAL FINDINGS Expression of an adenovirally-vectored luciferase reporter gene from the Rad51 promoter was up to 50 fold higher in cancer(More)