Vincent Denoël

Learn More
An original signal processing algorithm is presented to automatically extract, on a stride-by-stride basis, four consecutive fundamental events of walking, heel strike (HS), toe strike (TS), heel-off (HO), and toe-off (TO), from wireless accelerometers applied to the right and left foot. First, the signals recorded from heel and toe three-axis(More)
This paper extends the approach proposed by Richard et al (2007) to analyze the axial and torsional vibrations of drilling systems that are excited by the particular boundary conditions at the drag bit-rock interface, by basing the formulation of the model on a continuum representation of the drillstring rather than on a characterization of the drilling(More)
Tendon lesions are among the most frequent musculoskeletal pathologies. Vascular endothelial growth factor (VEGF) is known to regulate angiogenesis. VEGF-111, a biologically active and proteolysis-resistant splice variant of this family, was recently identified. This study aimed at evaluating whether VEGF-111 could have a therapeutic interest in tendon(More)
BACKGROUND The contralateral shoulder is often used as a reference when evaluating a pathologic shoulder. However, the literature provides contradictory results regarding the symmetry of the scapular pattern in a healthy population. We assume that several factors including gender and type of motion may influence the bilateral symmetry of the scapulae. (More)
This paper presents a semi-analytical approach for the evolution analysis of a beam into given boundaries. The analytical description of contact locations, contact forces and beam deflections results in an exact modelling of the phenomenon (no penetration allowed). Despite the apparent complexity of the problem, the analytical relations leading to two-point(More)
A new signal processing algorithm is developed for quantifying heel strike (HS) and toe-off (TO) event times solely from measured heel and toe coordinates during overground walking. It is based on a rough estimation of relevant local 3D position signals. An original piecewise linear fitting method is applied to these local signals to accurately identify HS(More)
In numerous biological, medical and engineering applications, elastic rods are constrained to deform inside or around tube-like surfaces. To solve efficiently this class of problems, the equations governing the deflection of elastic rods are reformulated within the Eulerian framework of this generic tubular constraint defined as a perfectly stiff normal(More)