Vincent Carriou

Learn More
The relationship between the surface Electromyogram (sEMG) signal and the force of an individual muscle is still ambiguous due to the complexity of experimental evaluation. However, understanding this relationship should be useful for the assessment of neuromuscular system in healthy and pathological contexts. In this study, we present a global(More)
In the course of the last decade, fast and qualitative computing power developments have undoubtedly permitted for a better and more realistic modeling of complex physiological processes. Due to this favorable environment, a fast, generic and reliable model for high density surface electromyographic (HD-sEMG) signal generation with a multilayered(More)
The Brachialis (BR) is placed under the Biceps Brachii (BB) deep in the upper arm. Therefore, the detection of the corresponding surface Electromyogram (sEMG) is a complex task. The BR is an important elbow flexor, but it is usually not considered in the sEMG based force estimation process. The aim of this study was to attempt to separate the two sEMG(More)
This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with(More)
The aim of this work is to assess an automatic optimized algorithm for the positioning of the Motor Units (MUs) within a multilayered cylindrical High Density surface EMG (HD-sEMG) generation model representing a skeletal muscle. The multilayered cylinder is composed of three layers: muscle, adipose and skin tissues. For this purpose, two different(More)
  • 1