Learn More
In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-Hermitian, can still exhibit entirely real spectra provided that they obey parity-time requirements or PT symmetry. Here we demonstrate experimentally passive PT-symmetry breaking within the realm of optics. This phase transition leads to a loss induced optical(More)
This paper presents work aimed at optimizing the fabrication of silicon nitride Si(x)N(y) thin-film visible-light planar waveguides using plasma-enhanced chemical vapour deposition (PECVD). The effects of plasma frequency, precursor gas ratio, and thermal annealing in relation to waveguide optical properties (refractive index, propagation losses) are(More)
We study experimentally and numerically the nonlinear scattering of wave packets by local multisite guiding centers embedded in a continuous dielectric medium as a function of the input power and angle of incidence. The extent of trapping into the linear modes of different sites is manipulated as a function of both the input power and the angle of(More)
We report on design, simulation and fabrication of ultimate and compact 3D close-geometries optical microcavities. These are based on the extension of the so-called 2.5D nanophotonic approach where a quasi 3D control of the photons has been soon demonstrated by our group. A tight control of photons, spectrally and spatially, in a small air region inside a(More)
A novel reprogrammable optical phase array (ROPA) device is presented as a reconfigurable electro-optic element. One specific application of the ROPA, a 1 x 6 electro-optic space switch, is fully described. Switching angles are within 2 degrees , and switching is achieved through a complementary metal-oxide semiconductor (CMOS) controlled, diffraction(More)
We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode's active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission(More)
The high power density in AlGaN/GaN High Electron Mobility Transistors (HEMTs) can notably produce strong self-heating in the device. This effect leads to performance degradation and reliability concerns. Thermal performance of the device is strongly dependent on the epitaxial structure and substrate material. This work puts into perspective the thermal(More)
  • Laurence Convert, Frédérique Girard Baril, +5 authors Vincent Aimez
  • 2012
New radiotracer developments for nuclear medicine imaging require the analysis of blood as a function of time in small animal models. A microfluidic device was developed to monitor the radioactivity concentration in the blood of rats and mice in real time. The microfluidic technology enables a large capture solid angle and a reduction in the separation(More)